Paper Reading AI Learner

Creating a Universal Dependencies Treebank of Spoken Frisian-Dutch Code-switched Data

2021-02-22 16:22:28
Anouck Braggaar, Rob van der Goot


tract: This paper explores the difficulties of annotating transcribed spoken Dutch-Frisian code-switch utterances into Universal Dependencies. We make use of data from the FAME! corpus, which consists of transcriptions and audio data. Besides the usual annotation difficulties, this dataset is extra challenging because of Frisian being low-resource, the informal nature of the data, code-switching and non-standard sentence segmentation. As a starting point, two annotators annotated 150 random utterances in three stages of 50 utterances. After each stage, disagreements where discussed and resolved. An increase of 7.8 UAS and 10.5 LAS points was achieved between the first and third round. This paper will focus on the issues that arise when annotating a transcribed speech corpus. To resolve these issues several solutions are proposed.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot