Paper Reading AI Learner

An introduction to distributed training of deep neural networks for segmentation tasks with large seismic datasets

2021-02-25 17:06:00
Claire Birnie, Haithem Jarraya, Fredrik Hansteen

Abstract

Deep learning applications are drastically progressing in seismic processing and interpretation tasks. However, the majority of approaches subsample data volumes and restrict model sizes to minimise computational requirements. Subsampling the data risks losing vital spatio-temporal information which could aid training whilst restricting model sizes can impact model performance, or in some extreme cases, renders more complicated tasks such as segmentation impossible. This paper illustrates how to tackle the two main issues of training of large neural networks: memory limitations and impracticably large training times. Typically, training data is preloaded into memory prior to training, a particular challenge for seismic applications where data is typically four times larger than that used for standard image processing tasks (float32 vs. uint8). Using a microseismic use case, we illustrate how over 750GB of data can be used to train a model by using a data generator approach which only stores in memory the data required for that training batch. Furthermore, efficient training over large models is illustrated through the training of a 7-layer UNet with input data dimensions of 4096X4096. Through a batch-splitting distributed training approach, training times are reduced by a factor of four. The combination of data generators and distributed training removes any necessity of data 1 subsampling or restriction of neural network sizes, offering the opportunity of utilisation of larger networks, higher-resolution input data or moving from 2D to 3D problem spaces.

Abstract (translated)

URL

https://arxiv.org/abs/2102.13003

PDF

https://arxiv.org/pdf/2102.13003.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot