Paper Reading AI Learner

Robust Deep Reinforcement Learning via Multi-View Information Bottleneck

2021-02-26 02:24:36
Jiameng Fan, Wenchao Li

Abstract

Deep reinforcement learning (DRL) agents are often sensitive to visual changes that were unseen in their training environments. To address this problem, we introduce a robust representation learning approach for RL. We introduce an auxiliary objective based on the multi-view information bottleneck (MIB) principle which encourages learning representations that are both predictive of the future and less sensitive to task-irrelevant distractions. This enables us to train high-performance policies that are robust to visual distractions and can generalize to unseen environments. We demonstrate that our approach can achieve SOTA performance on challenging visual control tasks, even when the background is replaced with natural videos. In addition, we show that our approach outperforms well-established baselines on generalization to unseen environments using the large-scale Procgen benchmark.

Abstract (translated)

URL

https://arxiv.org/abs/2102.13268

PDF

https://arxiv.org/pdf/2102.13268.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot