Paper Reading AI Learner

Joint Learning of Neural Transfer and Architecture Adaptation for Image Recognition

2021-03-31 08:15:17
Guangrun Wang, Liang Lin, Rongcong Chen, Guangcong Wang, Jiqi Zhang

Abstract

Current state-of-the-art visual recognition systems usually rely on the following pipeline: (a) pretraining a neural network on a large-scale dataset (e.g., ImageNet) and (b) finetuning the network weights on a smaller, task-specific dataset. Such a pipeline assumes the sole weight adaptation is able to transfer the network capability from one domain to another domain, based on a strong assumption that a fixed architecture is appropriate for all domains. However, each domain with a distinct recognition target may need different levels/paths of feature hierarchy, where some neurons may become redundant, and some others are re-activated to form new network structures. In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness, compared to the existing image recognition pipeline that only tunes the weights regardless of the architecture. Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks. This further improves the search efficiency of our method. Moreover, we also provide principled and empirical analysis to explain why our approach works by investigating the ineffectiveness of existing neural architecture search. We find that preserving the joint distribution of the network architecture and weights is of importance. This analysis not only benefits image recognition but also provides insights for crafting neural networks. Experiments on five representative image recognition tasks such as person re-identification, age estimation, gender recognition, image classification, and unsupervised domain adaptation demonstrate the effectiveness of our method.

Abstract (translated)

URL

https://arxiv.org/abs/2103.16889

PDF

https://arxiv.org/pdf/2103.16889.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot