Paper Reading AI Learner

Procrustean Training for Imbalanced Deep Learning

2021-04-05 04:44:01
Han-Jia Ye, De-Chuan Zhan, Wei-Lun Chao

Abstract

Neural networks trained with class-imbalanced data are known to perform poorly on minor classes of scarce training data. Several recent works attribute this to over-fitting to minor classes. In this paper, we provide a novel explanation of this issue. We found that a neural network tends to first under-fit the minor classes by classifying most of their data into the major classes in early training epochs. To correct these wrong predictions, the neural network then must focus on pushing features of minor class data across the decision boundaries between major and minor classes, leading to much larger gradients for features of minor classes. We argue that such an under-fitting phase over-emphasizes the competition between major and minor classes, hinders the neural network from learning the discriminative knowledge that can be generalized to test data, and eventually results in over-fitting. To address this issue, we propose a novel learning strategy to equalize the training progress across classes. We mix features of the major class data with those of other data in a mini-batch, intentionally weakening their features to prevent a neural network from fitting them first. We show that this strategy can largely balance the training accuracy and feature gradients across classes, effectively mitigating the under-fitting then over-fitting problem for minor class data. On several benchmark datasets, our approach achieves the state-of-the-art accuracy, especially for the challenging step-imbalanced cases.

Abstract (translated)

URL

https://arxiv.org/abs/2104.01769

PDF

https://arxiv.org/pdf/2104.01769.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot