Paper Reading AI Learner

Leaving Goals on the Pitch: Evaluating Decision Making in Soccer

2021-04-07 16:56:31
Maaike Van Roy, Pieter Robberechts, Wen-Chi Yang, Luc De Raedt, Jesse Davis


tract: Analysis of the popular expected goals (xG) metric in soccer has determined that a (slightly) smaller number of high-quality attempts will likely yield more goals than a slew of low-quality ones. This observation has driven a change in shooting behavior. Teams are passing up on shots from outside the penalty box, in the hopes of generating a better shot closer to goal later on. This paper evaluates whether this decrease in long-distance shots is warranted. Therefore, we propose a novel generic framework to reason about decision-making in soccer by combining techniques from machine learning and artificial intelligence (AI). First, we model how a team has behaved offensively over the course of two seasons by learning a Markov Decision Process (MDP) from event stream data. Second, we use reasoning techniques arising from the AI literature on verification to each team's MDP. This allows us to reason about the efficacy of certain potential decisions by posing counterfactual questions to the MDP. Our key conclusion is that teams would score more goals if they shot more often from outside the penalty box in a small number of team-specific locations. The proposed framework can easily be extended and applied to analyze other aspects of the game.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot