Paper Reading AI Learner

Combining Pre-trained Word Embeddings and Linguistic Features for Sequential Metaphor Identification

2021-04-07 17:43:05
Rui Mao, Chenghua Lin, Frank Guerin


tract: We tackle the problem of identifying metaphors in text, treated as a sequence tagging task. The pre-trained word embeddings GloVe, ELMo and BERT have individually shown good performance on sequential metaphor identification. These embeddings are generated by different models, training targets and corpora, thus encoding different semantic and syntactic information. We show that leveraging GloVe, ELMo and feature-based BERT based on a multi-channel CNN and a Bidirectional LSTM model can significantly outperform any single word embedding method and the combination of the two embeddings. Incorporating linguistic features into our model can further improve model performance, yielding state-of-the-art performance on three public metaphor datasets. We also provide in-depth analysis on the effectiveness of leveraging multiple word embeddings, including analysing the spatial distribution of different embedding methods for metaphors and literals, and showing how well the embeddings complement each other in different genres and parts of speech.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot