Paper Reading AI Learner

Self-Supervised Learning for Semi-Supervised Temporal Action Proposal

2021-04-07 16:03:25
Xiang Wang, Shiwei Zhang, Zhiwu Qing, Yuanjie Shao, Changxin Gao, Nong Sang

Abstract

tract: Self-supervised learning presents a remarkable performance to utilize unlabeled data for various video tasks. In this paper, we focus on applying the power of self-supervised methods to improve semi-supervised action proposal generation. Particularly, we design an effective Self-supervised Semi-supervised Temporal Action Proposal (SSTAP) framework. The SSTAP contains two crucial branches, i.e., temporal-aware semi-supervised branch and relation-aware self-supervised branch. The semi-supervised branch improves the proposal model by introducing two temporal perturbations, i.e., temporal feature shift and temporal feature flip, in the mean teacher framework. The self-supervised branch defines two pretext tasks, including masked feature reconstruction and clip-order prediction, to learn the relation of temporal clues. By this means, SSTAP can better explore unlabeled videos, and improve the discriminative abilities of learned action features. We extensively evaluate the proposed SSTAP on THUMOS14 and ActivityNet v1.3 datasets. The experimental results demonstrate that SSTAP significantly outperforms state-of-the-art semi-supervised methods and even matches fully-supervised methods. Code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2104.03214

PDF

https://arxiv.org/pdf/2104.03214


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot