Paper Reading AI Learner

Uncertainty-aware Remaining Useful Life predictor

2021-04-08 08:50:44
Luca Biggio, Alexander Wieland, Manuel Arias Chao, Iason Kastanis, Olga Fink

Abstract

Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate within its defined specifications. Deploying successful RUL prediction methods in real-life applications is a prerequisite for the design of intelligent maintenance strategies with the potential of drastically reducing maintenance costs and machine downtimes. In light of their superior performance in a wide range of engineering fields, Machine Learning (ML) algorithms are natural candidates to tackle the challenges involved in the design of intelligent maintenance systems. In particular, given the potentially catastrophic consequences or substantial costs associated with maintenance decisions that are either too late or too early, it is desirable that ML algorithms provide uncertainty estimates alongside their predictions. However, standard data-driven methods used for uncertainty estimation in RUL problems do not scale well to large datasets or are not sufficiently expressive to model the high-dimensional mapping from raw sensor data to RUL estimates. In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations. We perform a thorough evaluation and comparison of several variants of DGPs applied to RUL predictions. The performance of the algorithms is evaluated on the N-CMAPSS (New Commercial Modular Aero-Propulsion System Simulation) dataset from NASA for aircraft engines. The results show that the proposed methods are able to provide very accurate RUL predictions along with sensible uncertainty estimates, providing more reliable solutions for (safety-critical) real-life industrial applications.

Abstract (translated)

URL

https://arxiv.org/abs/2104.03613

PDF

https://arxiv.org/pdf/2104.03613.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot