Paper Reading AI Learner

Detecting of a Patient's Condition From Clinical Narratives Using Natural Language Representation

2021-04-08 17:16:04
Thanh-Dung Le, Jerome Rambaud, Guillaume Sans, Philippe Jouvet, Rita Noumeir

Abstract

This paper proposes a joint clinical natural language representation learning and supervised classification framework based on machine learning for detecting concept labels in clinical narratives at CHU Sainte Justine Hospital (CHUSJ). The novel framework jointly discovers distributional syntactic and latent semantic (representation learning) from contextual clinical narrative inputs and, then, learns the knowledge representation for labeling in the contextual output (supervised classification). First, for having an effective representation learning approach with a small data set, mixing of numeric values and texts. Four different methods are applied to capture the numerical vital sign values. Then, different representation learning approaches are using to discover the rich structure from clinical narrative data. Second, for an automatic encounter with disease prediction, in this case, cardiac failure. The binary classifiers are iteratively trained to learn the knowledge representation of processed data in the preceding steps. The multilayer perceptron neural network outperforms other discriminative and generative classifiers. Consequently, the proposed framework yields an overall classification performance with accuracy, recall, and precision of 89 % and 88 %, 89 %, respectively. Furthermore, a generative autoencoder (AE) learning algorithm is then proposed to leverage the sparsity reduction. Affirmatively, AE algorithm is overperforming other sparsity reduction techniques. And, the classifier performances can successfully achieve up to 91 %, 91%, and 91%, respectively, for accuracy, recall, and precision.

Abstract (translated)

URL

https://arxiv.org/abs/2104.03969

PDF

https://arxiv.org/pdf/2104.03969.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot