Paper Reading AI Learner

Temporal Consistency Two-Stream CNN for Human Motion Prediction

2021-04-11 13:50:18
Jin Tang, Jin Zhang, Jianqin Yin

Abstract

Fusion is critical for a two-stream network. In this paper, we propose a novel temporal fusion (TF) module to fuse the two-stream joints' information to predict human motion, including a temporal concatenation and a reinforcement trajectory spatial-temporal (TST) block, specifically designed to keep prediction temporal consistency. In particular, the temporal concatenation keeps the temporal consistency of preliminary predictions from two streams. Meanwhile, the TST block improves the spatial-temporal feature coupling. However, the TF module can increase the temporal continuities between the first predicted pose and the given poses and between each predicted pose. The fusion is based on a two-stream network that consists of a dynamic velocity stream (V-Stream) and a static position stream (P-Stream) because we found that the joints' velocity information improves the short-term prediction, while the joints' position information is better at long-term prediction, and they are complementary in motion prediction. Finally, our approach achieves impressive results on three benchmark datasets, including H3.6M, CMU-Mocap, and 3DPW in both short-term and long-term predictions, confirming its effectiveness and efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2104.05015

PDF

https://arxiv.org/pdf/2104.05015.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot