Paper Reading AI Learner

Real-Time Object Detection and Localization in Compressive Sensed Video on Embedded Hardware

2021-04-18 04:46:31
Yeshwanth Ravi Theja Bethi, Sathyaprakash Narayanan, Venkat Rangan, Chetan Singh Thakur

Abstract

Every day around the world, interminable terabytes of data are being captured for surveillance purposes. A typical 1-2MP CCTV camera generates around 7-12GB of data per day. Frame-by-frame processing of such enormous amount of data requires hefty computational resources. In recent years, compressive sensing approaches have shown impressive results in signal processing by reducing the sampling bandwidth. Different sampling mechanisms were developed to incorporate compressive sensing in image and video acquisition. Pixel-wise coded exposure is one among the promising sensing paradigms for capturing videos in the compressed domain, which was also realized into an all-CMOS sensor \cite{Xiong2017}. Though cameras that perform compressive sensing save a lot of bandwidth at the time of sampling and minimize the memory required to store videos, we cannot do much in terms of processing until the videos are reconstructed to the original frames. But, the reconstruction of compressive-sensed (CS) videos still takes a lot of time and is also computationally expensive. In this work, we show that object detection and localization can be possible directly on the CS frames (easily upto 20x compression). To our knowledge, this is the first time that the problem of object detection and localization on CS frames has been attempted. Hence, we also created a dataset for training in the CS domain. We were able to achieve a good accuracy of 46.27\% mAP(Mean Average Precision) with the proposed model with an inference time of 23ms directly on the compressed frames(approx. 20 original domain frames), this facilitated for real-time inference which was verified on NVIDIA TX2 embedded board. Our framework will significantly reduce the communication bandwidth, and thus reduction in power as the video compression will be done at the image sensor processing core.

Abstract (translated)

URL

https://arxiv.org/abs/1912.08519

PDF

https://arxiv.org/pdf/1912.08519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot