Paper Reading AI Learner

Motion-guided Non-local Spatial-Temporal Network for Video Crowd Counting

2021-04-28 18:05:13
Haoyue Bai, S.-H. Gary Chan

Abstract

We study video crowd counting, which is to estimate the number of objects (people in this paper) in all the frames of a video sequence. Previous work on crowd counting is mostly on still images. There has been little work on how to properly extract and take advantage of the spatial-temporal correlation between neighboring frames in both short and long ranges to achieve high estimation accuracy for a video sequence. In this work, we propose Monet, a novel and highly accurate motion-guided non-local spatial-temporal network for video crowd counting. Monet first takes people flow (motion information) as guidance to coarsely segment the regions of pixels where a person may be. Given these regions, Monet then uses a non-local spatial-temporal network to extract spatial-temporally both short and long-range contextual information. The whole network is finally trained end-to-end with a fused loss to generate a high-quality density map. Noting the scarcity and low quality (in terms of resolution and scene diversity) of the publicly available video crowd datasets, we have collected and built a large-scale video crowd counting datasets, VidCrowd, to contribute to the community. VidCrowd contains 9,000 frames of high resolution (2560 x 1440), with 1,150,239 head annotations captured in different scenes, crowd density and lighting in two cities. We have conducted extensive experiments on the challenging VideoCrowd and two public video crowd counting datasets: UCSD and Mall. Our approach achieves substantially better performance in terms of MAE and MSE as compared with other state-of-the-art approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2104.13946

PDF

https://arxiv.org/pdf/2104.13946.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot