Paper Reading AI Learner

A method to segment maps from different modalities using free space layout -- MAORIS : MAp Of RIpples Segmentation

2021-05-28 12:41:02
Malcolm Mielle, Martin Magnusson, Achim J. Lilienthal

Abstract

How to divide floor plans or navigation maps into semantic representations, such as rooms and corridors, is an important research question in fields such as human-robot interaction, place categorization, or semantic mapping. While most works focus on segmenting robot built maps, those are not the only types of map a robot, or its user, can use. We present a method for segmenting maps from different modalities, focusing on robot built maps and hand-drawn sketch maps, and show better results than state of the art for both types. Our method segments the map by doing a convolution between the distance image of the map and a circular kernel, and grouping pixels of the same value. Segmentation is done by detecting ripple-like patterns where pixel values varies quickly, and merging neighboring regions with similar values. We identify a flaw in the segmentation evaluation metric used in recent works and propose a metric based on Matthews correlation coefficient (MCC). We compare our results to ground-truth segmentations of maps from a publicly available dataset, on which we obtain a better MCC than the state of the art with 0.98 compared to 0.65 for a recent Voronoi-based segmentation method and 0.70 for the DuDe segmentation method. We also provide a dataset of sketches of an indoor environment, with two possible sets of ground truth segmentations, on which our method obtains an MCC of 0.56 against 0.28 for the Voronoi-based segmentation method and 0.30 for DuDe.

Abstract (translated)

URL

https://arxiv.org/abs/1709.09899

PDF

https://arxiv.org/pdf/1709.09899.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot