Paper Reading AI Learner

To Point or Not to Point: Understanding How Abstractive Summarizers Paraphrase Text

2021-06-03 04:03:15
Matt Wilber, William Timkey, Marten Van Schijndel

Abstract

Abstractive neural summarization models have seen great improvements in recent years, as shown by ROUGE scores of the generated summaries. But despite these improved metrics, there is limited understanding of the strategies different models employ, and how those strategies relate their understanding of language. To understand this better, we run several experiments to characterize how one popular abstractive model, the pointer-generator model of See et al. (2017), uses its explicit copy/generation switch to control its level of abstraction (generation) vs extraction (copying). On an extractive-biased dataset, the model utilizes syntactic boundaries to truncate sentences that are otherwise often copied verbatim. When we modify the copy/generation switch and force the model to generate, only simple paraphrasing abilities are revealed alongside factual inaccuracies and hallucinations. On an abstractive-biased dataset, the model copies infrequently but shows similarly limited abstractive abilities. In line with previous research, these results suggest that abstractive summarization models lack the semantic understanding necessary to generate paraphrases that are both abstractive and faithful to the source document.

Abstract (translated)

URL

https://arxiv.org/abs/2106.01581

PDF

https://arxiv.org/pdf/2106.01581.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot