Paper Reading AI Learner

Contextual Guided Segmentation Framework for Semi-supervised Video Instance Segmentation

2021-06-07 04:16:50
Trung-Nghia Le, Tam V. Nguyen, Minh-Triet Tran

Abstract

In this paper, we propose Contextual Guided Segmentation (CGS) framework for video instance segmentation in three passes. In the first pass, i.e., preview segmentation, we propose Instance Re-Identification Flow to estimate main properties of each instance (i.e., human/non-human, rigid/deformable, known/unknown category) by propagating its preview mask to other frames. In the second pass, i.e., contextual segmentation, we introduce multiple contextual segmentation schemes. For human instance, we develop skeleton-guided segmentation in a frame along with object flow to correct and refine the result across frames. For non-human instance, if the instance has a wide variation in appearance and belongs to known categories (which can be inferred from the initial mask), we adopt instance segmentation. If the non-human instance is nearly rigid, we train FCNs on synthesized images from the first frame of a video sequence. In the final pass, i.e., guided segmentation, we develop a novel fined-grained segmentation method on non-rectangular regions of interest (ROIs). The natural-shaped ROI is generated by applying guided attention from the neighbor frames of the current one to reduce the ambiguity in the segmentation of different overlapping instances. Forward mask propagation is followed by backward mask propagation to further restore missing instance fragments due to re-appeared instances, fast motion, occlusion, or heavy deformation. Finally, instances in each frame are merged based on their depth values, together with human and non-human object interaction and rare instance priority. Experiments conducted on the DAVIS Test-Challenge dataset demonstrate the effectiveness of our proposed framework. We achieved the 3rd consistently in the DAVIS Challenges 2017-2019 with 75.4%, 72.4%, and 78.4% in terms of global score, region similarity, and contour accuracy, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2106.03330

PDF

https://arxiv.org/pdf/2106.03330.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot