Paper Reading AI Learner

Instance-Level Task Parameters: A Robust Multi-task Weighting Framework

2021-06-11 02:35:42
Pavan Kumar Anasosalu Vasu, Shreyas Saxena, Oncel Tuzel

Abstract

Recent works have shown that deep neural networks benefit from multi-task learning by learning a shared representation across several related tasks. However, performance of such systems depend on relative weighting between various losses involved during training. Prior works on loss weighting schemes assume that instances are equally easy or hard for all tasks. In order to break this assumption, we let the training process dictate the optimal weighting of tasks for every instance in the dataset. More specifically, we equip every instance in the dataset with a set of learnable parameters (instance-level task parameters) where the cardinality is equal to the number of tasks learned by the model. These parameters model the weighting of each task for an instance. They are updated by gradient descent and do not require hand-crafted rules. We conduct extensive experiments on SURREAL and CityScapes datasets, for human shape and pose estimation, depth estimation and semantic segmentation tasks. In these tasks, our approach outperforms recent dynamic loss weighting approaches, e.g. reducing surface estimation errors by 8.97% on SURREAL. When applied to datasets where one or more tasks can have noisy annotations, the proposed method learns to prioritize learning from clean labels for a given task, e.g. reducing surface estimation errors by up to 60%. We also show that we can reliably detect corrupt labels for a given task as a by-product from learned instance-level task parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2106.06129

PDF

https://arxiv.org/pdf/2106.06129.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot