Paper Reading AI Learner

Self-supervised Video Representation Learning with Cross-Stream Prototypical Contrasting

2021-06-18 13:57:51
Martine Toering, Ioannis Gatopoulos, Maarten Stol, Vincent Tao Hu

Abstract

Instance-level contrastive learning techniques, which rely on data augmentation and a contrastive loss function, have found great success in the domain of visual representation learning. They are not suitable for exploiting the rich dynamical structure of video however, as operations are done on many augmented instances. In this paper we propose "Video Cross-Stream Prototypical Contrasting", a novel method which predicts consistent prototype assignments from both RGB and optical flow views, operating on sets of samples. Specifically, we alternate the optimization process; while optimizing one of the streams, all views are mapped to one set of stream prototype vectors. Each of the assignments is predicted with all views except the one matching the prediction, pushing representations closer to their assigned prototypes. As a result, more efficient video embeddings with ingrained motion information are learned, without the explicit need for optical flow computation during inference. We obtain state-of-the-art results on nearest neighbour video retrieval and action recognition, outperforming previous best by +3.2% on UCF101 using the S3D backbone (90.5% Top-1 acc), and by +7.2% on UCF101 and +15.1% on HMDB51 using the R(2+1)D backbone.

Abstract (translated)

URL

https://arxiv.org/abs/2106.10137

PDF

https://arxiv.org/pdf/2106.10137.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot