Paper Reading AI Learner

Deep Learning Models in Detection of Dietary Supplement Adverse Event Signals from Twitter

2021-06-21 20:35:01
Yefeng Wang, Yunpeng Zhao, Jiang Bian, Rui Zhang

Abstract

Objective: The objective of this study is to develop a deep learning pipeline to detect signals on dietary supplement-related adverse events (DS AEs) from Twitter. Material and Methods: We obtained 247,807 tweets ranging from 2012 to 2018 that mentioned both DS and AE. We annotated biomedical entities and relations on 2,000 randomly selected tweets. For the concept extraction task, we compared the performance of traditional word embeddings with SVM, CRF and LSTM-CRF classifiers to BERT models. For the relation extraction task, we compared GloVe vectors with CNN classifiers to BERT models. We chose the best performing models in each task to assemble an end-to-end deep learning pipeline to detect DS AE signals and compared the results to the known DS AEs from a DS knowledge base (i.e., iDISK). Results: In both tasks, the BERT-based models outperformed traditional word embeddings. The best performing concept extraction model is the BioBERT model that can identify supplement, symptom, and body organ entities with F1-scores of 0.8646, 0.8497, and 0.7104, respectively. The best performing relation extraction model is the BERT model that can identify purpose and AE relations with F1-scores of 0.8335 and 0.7538, respectively. The end-to-end pipeline was able to extract DS indication and DS AEs with an F1-score of 0.7459 and 0,7414, respectively. Comparing to the iDISK, we could find both known and novel DS-AEs. Conclusion: We have demonstrated the feasibility of detecting DS AE signals from Twitter with a BioBERT-based deep learning pipeline.

Abstract (translated)

URL

https://arxiv.org/abs/2106.11403

PDF

https://arxiv.org/pdf/2106.11403.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot