Paper Reading AI Learner

Efficient Realistic Data Generation Framework leveraging Deep Learning-based Human Digitization

2021-06-28 08:07:31
C. Symeonidis, P. Nousi, P. Tosidis, K. Tsampazis, N. Passalis, A. Tefas, N. Nikolaidis

Abstract

The performance of supervised deep learning algorithms depends significantly on the scale, quality and diversity of the data used for their training. Collecting and manually annotating large amount of data can be both time-consuming and costly tasks to perform. In the case of tasks related to visual human-centric perception, the collection and distribution of such data may also face restrictions due to legislation regarding privacy. In addition, the design and testing of complex systems, e.g., robots, which often employ deep learning-based perception models, may face severe difficulties as even state-of-the-art methods trained on real and large-scale datasets cannot always perform adequately as they have not adapted to the visual differences between the virtual and the real world data. As an attempt to tackle and mitigate the effect of these issues, we present a method that automatically generates realistic synthetic data with annotations for a) person detection, b) face recognition, and c) human pose estimation. The proposed method takes as input real background images and populates them with human figures in various poses. Instead of using hand-made 3D human models, we propose the use of models generated through deep learning methods, further reducing the dataset creation costs, while maintaining a high level of realism. In addition, we provide open-source and easy to use tools that implement the proposed pipeline, allowing for generating highly-realistic synthetic datasets for a variety of tasks. A benchmarking and evaluation in the corresponding tasks shows that synthetic data can be effectively used as a supplement to real data.

Abstract (translated)

URL

https://arxiv.org/abs/2106.15409

PDF

https://arxiv.org/pdf/2106.15409.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot