Paper Reading AI Learner

Cross-Lingual Adaptation for Type Inference

2021-07-01 00:20:24
Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, Yang Liu

Abstract

Deep learning-based techniques have been widely applied to the program analysis tasks, in fields such as type inference, fault localization, and code summarization. Hitherto deep learning-based software engineering systems rely thoroughly on supervised learning approaches, which require laborious manual effort to collect and label a prohibitively large amount of data. However, most Turing-complete imperative languages share similar control- and data-flow structures, which make it possible to transfer knowledge learned from one language to another. In this paper, we propose cross-lingual adaptation of program analysis, which allows us to leverage prior knowledge learned from the labeled dataset of one language and transfer it to the others. Specifically, we implemented a cross-lingual adaptation framework, PLATO, to transfer a deep learning-based type inference procedure across weakly typed languages, e.g., Python to JavaScript and vice versa. PLATO incorporates a novel joint graph kernelized attention based on abstract syntax tree and control flow graph, and applies anchor word augmentation across different languages. Besides, by leveraging data from strongly typed languages, PLATO improves the perplexity of the backbone cross-programming-language model and the performance of downstream cross-lingual transfer for type inference. Experimental results illustrate that our framework significantly improves the transferability over the baseline method by a large margin.

Abstract (translated)

URL

https://arxiv.org/abs/2107.00157

PDF

https://arxiv.org/pdf/2107.00157.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot