Paper Reading AI Learner

Looking Twice for Partial Clues: Weakly-supervised Part-Mentored Attention Network for Vehicle Re-Identification

2021-07-17 12:19:12
Lisha Tang, Yi Wang, Lap-Pui Chau

Abstract

Vehicle re-identification (Re-ID) is to retrieve images of the same vehicle across different cameras. Two key challenges lie in the subtle inter-instance discrepancy caused by near-duplicate identities and the large intra-instance variance caused by different views. Since the holistic appearance suffers from viewpoint variation and distortion, part-level feature learning has been introduced to enhance vehicle description. However, existing approaches to localize and amplify significant parts often fail to handle spatial misalignment as well as occlusion and require expensive annotations. In this paper, we propose a weakly supervised Part-Mentored Attention Network (PMANet) composed of a Part Attention Network (PANet) for vehicle part localization with self-attention and a Part-Mentored Network (PMNet) for mentoring the global and local feature aggregation. Firstly, PANet is introduced to predict a foreground mask and pinpoint $K$ prominent vehicle parts only with weak identity supervision. Secondly, we propose a PMNet to learn global and part-level features with multi-scale attention and aggregate them in $K$ main-partial tasks via part transfer. Like humans who first differentiate objects with general information and then observe salient parts for more detailed clues, PANet and PMNet construct a two-stage attention structure to perform a coarse-to-fine search among identities. Finally, we address this Re-ID issue as a multi-task problem, including global feature learning, identity classification, and part transfer. We adopt Homoscedastic Uncertainty to learn the optimal weighing of different losses. Comprehensive experiments are conducted on two benchmark datasets. Our approach outperforms recent state-of-the-art methods by averagely 2.63% in CMC@1 on VehicleID and 2.2% in mAP on VeRi776. Results on occluded test sets also demonstrate the generalization ability of PMANet.

Abstract (translated)

URL

https://arxiv.org/abs/2107.08228

PDF

https://arxiv.org/pdf/2107.08228.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot