Paper Reading AI Learner

VisDrone-CC2020: The Vision Meets Drone Crowd Counting Challenge Results

2021-07-19 11:48:29
Dawei Du, Longyin Wen, Pengfei Zhu, Heng Fan, Qinghua Hu, Haibin Ling, Mubarak Shah, Junwen Pan, Ali Al-Ali, Amr Mohamed, Bakour Imene, Bin Dong, Binyu Zhang, Bouchali Hadia Nesma, Chenfeng Xu, Chenzhen Duan, Ciro Castiello, Corrado Mencar, Dingkang Liang, Florian Krüger, Gennaro Vessio, Giovanna Castellano, Jieru Wang, Junyu Gao, Khalid Abualsaud, Laihui Ding, Lei Zhao, Marco Cianciotta, Muhammad Saqib, Noor Almaadeed, Omar Elharrouss, Pei Lyu, Qi Wang, Shidong Liu, Shuang Qiu, Siyang Pan, Somaya Al-Maadeed, Sultan Daud Khan, Tamer Khattab, Tao Han, Thomas Golda, Wei Xu, Xiang Bai, Xiaoqing Xu, Xuelong Li, Yanyun Zhao, Ye Tian, Yingnan Lin, Yongchao Xu, Yuehan Yao, Zhenyu Xu, Zhijian Zhao, Zhipeng Luo, Zhiwei Wei, Zhiyuan Zhao

Abstract

Crowd counting on the drone platform is an interesting topic in computer vision, which brings new challenges such as small object inference, background clutter and wide viewpoint. However, there are few algorithms focusing on crowd counting on the drone-captured data due to the lack of comprehensive datasets. To this end, we collect a large-scale dataset and organize the Vision Meets Drone Crowd Counting Challenge (VisDrone-CC2020) in conjunction with the 16th European Conference on Computer Vision (ECCV 2020) to promote the developments in the related fields. The collected dataset is formed by $3,360$ images, including $2,460$ images for training, and $900$ images for testing. Specifically, we manually annotate persons with points in each video frame. There are $14$ algorithms from $15$ institutes submitted to the VisDrone-CC2020 Challenge. We provide a detailed analysis of the evaluation results and conclude the challenge. More information can be found at the website: \url{this http URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2107.08766

PDF

https://arxiv.org/pdf/2107.08766.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot