Paper Reading AI Learner

Lighter Stacked Hourglass Human Pose Estimation

2021-07-28 21:05:34
Ahmed Elhagry, Mohamed Saeed, Musie Araia

Abstract

Human pose estimation (HPE) is one of the most challenging tasks in computer vision as humans are deformable by nature and thus their pose has so much variance. HPE aims to correctly identify the main joint locations of a single person or multiple people in a given image or video. Locating joints of a person in images or videos is an important task that can be applied in action recognition and object tracking. As have many computer vision tasks, HPE has advanced massively with the introduction of deep learning to the field. In this paper, we focus on one of the deep learning-based approaches of HPE proposed by Newell et al., which they named the stacked hourglass network. Their approach is widely used in many applications and is regarded as one of the best works in this area. The main focus of their approach is to capture as much information as it can at all possible scales so that a coherent understanding of the local features and full-body location is achieved. Their findings demonstrate that important cues such as orientation of a person, arrangement of limbs, and adjacent joints' relative location can be identified from multiple scales at different resolutions. To do so, they makes use of a single pipeline to process images in multiple resolutions, which comprises a skip layer to not lose spatial information at each resolution. The resolution of the images stretches as lower as 4x4 to make sure that a smaller spatial feature is included. In this study, we study the effect of architectural modifications on the computational speed and accuracy of the network.

Abstract (translated)

URL

https://arxiv.org/abs/2107.13643

PDF

https://arxiv.org/pdf/2107.13643.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot