Paper Reading AI Learner

ConvNets vs. Transformers: Whose Visual Representations are More Transferable?

2021-08-11 16:20:38
Hong-Yu Zhou, Chixiang Lu, Sibei Yang, Yizhou Yu

Abstract

Vision transformers have attracted much attention from computer vision researchers as they are not restricted to the spatial inductive bias of ConvNets. However, although Transformer-based backbones have achieved much progress on ImageNet classification, it is still unclear whether the learned representations are as transferable as or even more transferable than ConvNets' features. To address this point, we systematically investigate the transfer learning ability of ConvNets and vision transformers in 15 single-task and multi-task performance evaluations. Given the strong correlation between the performance of pre-trained models and transfer learning, we include 2 residual ConvNets (i.e., R-101x3 and R-152x4) and 3 Transformer-based visual backbones (i.e., ViT-B, ViT-L and Swin-B), which have close error rates on ImageNet, that indicate similar transfer learning performance on downstream datasets. We observe consistent advantages of Transformer-based backbones on 13 downstream tasks (out of 15), including but not limited to fine-grained classification, scene recognition (classification, segmentation and depth estimation), open-domain classification, face recognition, etc. More specifically, we find that two ViT models heavily rely on whole network fine-tuning to achieve performance gains while Swin Transformer does not have such a requirement. Moreover, vision transformers behave more robustly in multi-task learning, i.e., bringing more improvements when managing mutually beneficial tasks and reducing performance losses when tackling irrelevant tasks. We hope our discoveries can facilitate the exploration and exploitation of vision transformers in the future.

Abstract (translated)

URL

https://arxiv.org/abs/2108.05305

PDF

https://arxiv.org/pdf/2108.05305.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot