Paper Reading AI Learner

Spatio-Temporal Interaction Graph Parsing Networks for Human-Object Interaction Recognition

2021-08-19 11:57:27
Ning Wang, Guangming Zhu, Liang Zhang, Peiyi Shen, Hongsheng Li, Cong Hua

Abstract

For a given video-based Human-Object Interaction scene, modeling the spatio-temporal relationship between humans and objects are the important cue to understand the contextual information presented in the video. With the effective spatio-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also to directly capture inter-time dependencies. It is more critical to capture the position changes of human and objects over the spatio-temporal dimension when their appearance features may not show up significant changes over time. The full use of appearance features, the spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance. In this paper, Spatio-Temporal Interaction Graph Parsing Networks (STIGPN) are constructed, which encode the videos with a graph composed of human and object nodes. These nodes are connected by two types of relations: (i) spatial relations modeling the interactions between human and the interacted objects within each frame. (ii) inter-time relations capturing the long range dependencies between human and the interacted objects across frame. With the graph, STIGPN learn spatio-temporal features directly from the whole video-based Human-Object Interaction scenes. Multi-modal features and a multi-stream fusion strategy are used to enhance the reasoning capability of STIGPN. Two Human-Object Interaction video datasets, including CAD-120 and Something-Else, are used to evaluate the proposed architectures, and the state-of-the-art performance demonstrates the superiority of STIGPN.

Abstract (translated)

URL

https://arxiv.org/abs/2108.08633

PDF

https://arxiv.org/pdf/2108.08633.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot