Paper Reading AI Learner

Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge

2021-08-25 19:22:25
Vinod Ganesan, Pratyush Kumar

Abstract

Massively parallel systolic arrays and resource-efficient depthwise separable convolutions are two promising techniques to accelerate DNN inference on the edge. Interestingly, their combination is inefficient: Computational patterns of depthwise separable convolutions do not exhibit a rhythmic systolic flow and lack sufficient data reuse to saturate systolic arrays. We formally analyse this inefficiency and propose an efficient operator, an optimal hardware dataflow, and a superior training methodology towards alleviating this. The efficient operator, called FuSeConv, is a drop-in replacement for depthwise separable convolutions. FuSeConv factorizes convolution fully along their spatial and depth dimensions. The resultant computation efficiently maps to systolic arrays. The optimal dataflow, called Spatial-Tiled Output Stationary (ST-OS), maximizes the efficiency of FuSeConv on systolic arrays. It maps independent convolutions to rows of the array to maximize resource utilization with negligible VLSI overheads. Neural Operator Scaffolding (NOS) scaffolds the training of FuSeConv by distilling knowledge from the expensive depthwise separable convolutions. This bridges the accuracy gap between FuSeConv networks and baselines. Additionally, NOS can be combined with Neural Architecture Search (NAS) to trade-off latency and accuracy. The HW/SW co-design of FuSeConv with ST-OS achieves a significant speedup of 4.1-9.25X with state-of-the-art efficient networks for ImageNet. The parameter efficiency of FuSeConv and its significant out-performance over depthwise separable convolutions on systolic arrays illustrates their promise as a strong solution on the edge. Training FuSeConv networks with NOS achieves accuracy comparable to the baselines. Further, by combining NOS with NAS, we design networks that define state-of-the-art models improving on both accuracy and latency on systolic arrays.

Abstract (translated)

URL

https://arxiv.org/abs/2108.11441

PDF

https://arxiv.org/pdf/2108.11441.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot