Paper Reading AI Learner

Mixed-precision deep learning based on computational memory

2020-01-31 11:22:09
S. R. Nandakumar, Manuel Le Gallo, Christophe Piveteau, Vinay Joshi, Giovanni Mariani, Irem Boybat, Geethan Karunaratne, Riduan Khaddam-Aljameh, Urs Egger, Anastasios Petropoulos, Theodore Antonakopoulos, Bipin Rajendran, Abu Sebastian, Evangelos Eleftheriou

Abstract

Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has motivated the search for novel computing architectures targeting this application. A computational memory unit with nanoscale resistive memory devices organized in crossbar arrays could store the synaptic weights in their conductance states and perform the expensive weighted summations in place in a non-von Neumann manner. However, updating the conductance states in a reliable manner during the weight update process is a fundamental challenge that limits the training accuracy of such an implementation. Here, we propose a mixed-precision architecture that combines a computational memory unit performing the weighted summations and imprecise conductance updates with a digital processing unit that accumulates the weight updates in high precision. A combined hardware/software training experiment of a multilayer perceptron based on the proposed architecture using a phase-change memory (PCM) array achieves 97.73% test accuracy on the task of classifying handwritten digits (based on the MNIST dataset), within 0.6% of the software baseline. The architecture is further evaluated using accurate behavioral models of PCM on a wide class of networks, namely convolutional neural networks, long-short-term-memory networks, and generative-adversarial networks. Accuracies comparable to those of floating-point implementations are achieved without being constrained by the non-idealities associated with the PCM devices. A system-level study demonstrates 173x improvement in energy efficiency of the architecture when used for training a multilayer perceptron compared with a dedicated fully digital 32-bit implementation.

Abstract (translated)

URL

https://arxiv.org/abs/2001.11773

PDF

https://arxiv.org/pdf/2001.11773.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot