Paper Reading AI Learner

Risk Assessment, Prediction, and Avoidance of Collision in Autonomous Drones

2021-08-29 07:48:53
Anamta Khan

Abstract

Unmanned Aerial Vehicles (UAVs), in particular Drones, have gained significant importance in diverse sectors, mainly military uses. Recently, we can see a growth in acceptance of autonomous UAVs in civilian spaces as well. However, there is still a long way to go before drones are capable enough to be safely used without human surveillance. A lot of subsystems and components are involved in taking care of position estimation, route planning, software/data security, and collision avoidance to have autonomous drones that fly in civilian spaces without being harmful to themselves, other UAVs, environment, or humans. The ultimate goal of this research is to advance collision avoidance and mitigation techniques through quantitative safety risk assessment. To this end, it is required to identify the most relevant faults/failures/threats that can happen during a drone's flight/mission. The analysis of historical data is also a relevant instrument to help to characterize the most frequent and relevant issues in UAV systems, which may cause safety hazards. Then we need to estimate their impact quantitatively, by using fault injection techniques. Knowing the growing interests in UAVs and their huge potential for future commercial applications, the expected outcome of this work will be helpful to researchers for future related research studies. Furthermore, we envisage the utilization of expected results by companies to develop safer drone applications, and by air traffic controllers for building failure prediction and collision avoidance solutions.

Abstract (translated)

URL

https://arxiv.org/abs/2108.12770

PDF

https://arxiv.org/pdf/2108.12770.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot