Paper Reading AI Learner

SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings

2021-09-09 20:32:48
Hongkuan Zhou, James Orme-Rogers, Rajgopal Kannan, Viktor Prasanna

Abstract

Temporal Knowledge Graphs store events in the form of subjects, relations, objects, and timestamps which are often represented by dynamic heterogeneous graphs. Event forecasting is a critical and challenging task in Temporal Knowledge Graph reasoning that predicts the subject or object of an event in the future. To obtain temporal embeddings multi-step away in the future, existing methods learn generative models that capture the joint distribution of the observed events. To reduce the high computation costs, these methods rely on unrealistic assumptions of independence and approximations in training and inference. In this work, we propose SeDyT, a discriminative framework that performs sequence modeling on the dynamic entity embeddings to solve the multi-step event forecasting problem. SeDyT consists of two components: a Temporal Graph Neural Network that generates dynamic entity embeddings in the past and a sequence model that predicts the entity embeddings in the future. Compared with the generative models, SeDyT does not rely on any heuristic-based probability model and has low computation complexity in both training and inference. SeDyT is compatible with most Temporal Graph Neural Networks and sequence models. We also design an efficient training method that trains the two components in one gradient descent propagation. We evaluate the performance of SeDyT on five popular datasets. By combining temporal Graph Neural Network models and sequence models, SeDyT achieves an average of 2.4% MRR improvement when not using the validation set and more than 10% MRR improvement when using the validation set.

Abstract (translated)

URL

https://arxiv.org/abs/2109.04550

PDF

https://arxiv.org/pdf/2109.04550.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot