Paper Reading AI Learner

AdaPruner: Adaptive Channel Pruning and Effective Weights Inheritance

2021-09-14 01:52:05
Xiangcheng Liu, Jian Cao, Hongyi Yao, Wenyu Sun, Yuan Zhang

Abstract

Channel pruning is one of the major compression approaches for deep neural networks. While previous pruning methods have mostly focused on identifying unimportant channels, channel pruning is considered as a special case of neural architecture search in recent years. However, existing methods are either complicated or prone to sub-optimal pruning. In this paper, we propose a pruning framework that adaptively determines the number of each layer's channels as well as the wights inheritance criteria for sub-network. Firstly, evaluate the importance of each block in the network based on the mean of the scaling parameters of the BN layers. Secondly, use the bisection method to quickly find the compact sub-network satisfying the budget. Finally, adaptively and efficiently choose the weight inheritance criterion that fits the current architecture and fine-tune the pruned network to recover performance. AdaPruner allows to obtain pruned network quickly, accurately and efficiently, taking into account both the structure and initialization weights. We prune the currently popular CNN models (VGG, ResNet, MobileNetV2) on different image classification datasets, and the experimental results demonstrate the effectiveness of our proposed method. On ImageNet, we reduce 32.8% FLOPs of MobileNetV2 with only 0.62% decrease for top-1 accuracy, which exceeds all previous state-of-the-art channel pruning methods. The code will be released.

Abstract (translated)

URL

https://arxiv.org/abs/2109.06397

PDF

https://arxiv.org/pdf/2109.06397.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot