Paper Reading AI Learner

Comfetch: Federated Learning of Large Networks on Memory-Constrained Clients via Sketching

2021-09-17 04:48:42
Tahseen Rabbani, Brandon Feng, Yifan Yang, Arjun Rajkumar, Amitabh Varshney, Furong Huang

Abstract

A popular application of federated learning is using many clients to train a deep neural network, the parameters of which are maintained on a central server. While recent efforts have focused on reducing communication complexity, existing algorithms assume that each participating client is able to download the current and full set of parameters, which may not be a practical assumption depending on the memory constraints of clients such as mobile devices. In this work, we propose a novel algorithm Comfetch, which allows clients to train large networks using compressed versions of the global architecture via Count Sketch, thereby reducing communication and local memory costs. We provide a theoretical convergence guarantee and experimentally demonstrate that it is possible to learn large networks, such as a deep convolutional network and an LSTM, through federated agents training on their sketched counterparts. The resulting global models exhibit competitive test accuracy when compared against the state-of-the-art FetchSGD and the classical FedAvg, both of which require clients to download the full architecture.

Abstract (translated)

URL

https://arxiv.org/abs/2109.08346

PDF

https://arxiv.org/pdf/2109.08346.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot