Paper Reading AI Learner

Oriented Object Detection in Aerial Images Based on Area Ratio of Parallelogram

2021-09-21 14:13:36
Xinyu Yu, Mi Lin, Jiangping Lu, Linlin Ou

Abstract

Rotated object detection is a challenging task in aerial images as the object in aerial images are displayed in arbitrary directions and usually densely packed. Although considerable progress has been made, there are still challenges that existing regression-based rotation detectors suffer the problem of discontinuous boundaries, which is directly caused by angular periodicity or corner ordering. In this paper, we propose a simple effective framework to address the above challenges. Instead of directly regressing the five parameters (coordinates of the central point, width, height, and rotation angle) or the four vertices, we use the area ratio of parallelogram (ARP) to accurately describe a multi-oriented object. Specifically, we regress coordinates of center point, height and width of minimum circumscribed rectangle of oriented object and three area ratios {\lambda}_1, {\lambda}_2 and {\lambda}_3. This may facilitate the offset learning and avoid the issue of angular periodicity or label points sequence for oriented objects. To further remedy the confusion issue nearly horizontal objects, we employ the area ratio between the object and its horizontal bounding box (minimum circumscribed rectangle) to guide the selection of horizontal or oriented detection for each object. We also propose a rotation efficient IoU loss (R-EIoU) to connect the horizontal bounding box with the three area ratios and improve the accurate for the rotating bounding box. Experimental results on three remote sensing datasets including HRSC2016, DOTA and UCAS-AOD and scene text including ICDAR2015 show that our method achieves superior detection performance compared with many state-of-the-art approaches. The code and model will be coming with paper published.

Abstract (translated)

URL

https://arxiv.org/abs/2109.10187

PDF

https://arxiv.org/pdf/2109.10187.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot