Paper Reading AI Learner

Federated Deep Learning with Bayesian Privacy

2021-09-27 12:48:40
Hanlin Gu, Lixin Fan, Bowen Li, Yan Kang, Yuan Yao, Qiang Yang

Abstract

Federated learning (FL) aims to protect data privacy by cooperatively learning a model without sharing private data among users. For Federated Learning of Deep Neural Network with billions of model parameters, existing privacy-preserving solutions are unsatisfactory. Homomorphic encryption (HE) based methods provide secure privacy protections but suffer from extremely high computational and communication overheads rendering it almost useless in practice . Deep learning with Differential Privacy (DP) was implemented as a practical learning algorithm at a manageable cost in complexity. However, DP is vulnerable to aggressive Bayesian restoration attacks as disclosed in the literature and demonstrated in experimental results of this work. To address the aforementioned perplexity, we propose a novel Bayesian Privacy (BP) framework which enables Bayesian restoration attacks to be formulated as the probability of reconstructing private data from observed public information. Specifically, the proposed BP framework accurately quantifies privacy loss by Kullback-Leibler (KL) Divergence between the prior distribution about the privacy data and the posterior distribution of restoration private data conditioning on exposed information}. To our best knowledge, this Bayesian Privacy analysis is the first to provides theoretical justification of secure privacy-preserving capabilities against Bayesian restoration attacks. As a concrete use case, we demonstrate that a novel federated deep learning method using private passport layers is able to simultaneously achieve high model performance, privacy-preserving capability and low computational complexity. Theoretical analysis is in accordance with empirical measurements of information leakage extensively experimented with a variety of DNN networks on image classification MNIST, CIFAR10, and CIFAR100 datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2109.13012

PDF

https://arxiv.org/pdf/2109.13012.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot