Paper Reading AI Learner

Generative Memory-Guided Semantic Reasoning Model for Image Inpainting

2021-10-01 08:37:34
Xin Feng, Wenjie Pei, Fengjun Li, Fanglin Chen, David Zhang, Guangming Lu

Abstract

Most existing methods for image inpainting focus on learning the intra-image priors from the known regions of the current input image to infer the content of the corrupted regions in the same image. While such methods perform well on images with small corrupted regions, it is challenging for these methods to deal with images with large corrupted area due to two potential limitations: 1) such methods tend to overfit each single training pair of images relying solely on the intra-image prior knowledge learned from the limited known area; 2) the inter-image prior knowledge about the general distribution patterns of visual semantics, which can be transferred across images sharing similar semantics, is not exploited. In this paper, we propose the Generative Memory-Guided Semantic Reasoning Model (GM-SRM), which not only learns the intra-image priors from the known regions, but also distills the inter-image reasoning priors to infer the content of the corrupted regions. In particular, the proposed GM-SRM first pre-learns a generative memory from the whole training data to capture the semantic distribution patterns in a global view. Then the learned memory are leveraged to retrieve the matching inter-image priors for the current corrupted image to perform semantic reasoning during image inpainting. While the intra-image priors are used for guaranteeing the pixel-level content consistency, the inter-image priors are favorable for performing high-level semantic reasoning, which is particularly effective for inferring semantic content for large corrupted area. Extensive experiments on Paris Street View, CelebA-HQ, and Places2 benchmarks demonstrate that our GM-SRM outperforms the state-of-the-art methods for image inpainting in terms of both the visual quality and quantitative metrics.

Abstract (translated)

URL

https://arxiv.org/abs/2110.00261

PDF

https://arxiv.org/pdf/2110.00261.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot