Paper Reading AI Learner

Maximize the Exploration of Congeneric Semantics for Weakly Supervised Semantic Segmentation

2021-10-08 08:59:16
Ke Zhang, Sihong Chen, Qi Ju, Yong Jiang, Yucong Li, Xin He

Abstract

With the increase in the number of image data and the lack of corresponding labels, weakly supervised learning has drawn a lot of attention recently in computer vision tasks, especially in the fine-grained semantic segmentation problem. To alleviate human efforts from expensive pixel-by-pixel annotations, our method focuses on weakly supervised semantic segmentation (WSSS) with image-level tags, which are much easier to obtain. As a huge gap exists between pixel-level segmentation and image-level labels, how to reflect the image-level semantic information on each pixel is an important question. To explore the congeneric semantic regions from the same class to the maximum, we construct the patch-level graph neural network (P-GNN) based on the self-detected patches from different images that contain the same class labels. Patches can frame the objects as much as possible and include as little background as possible. The graph network that is established with patches as the nodes can maximize the mutual learning of similar objects. We regard the embedding vectors of patches as nodes, and use transformer-based complementary learning module to construct weighted edges according to the embedding similarity between different nodes. Moreover, to better supplement semantic information, we propose soft-complementary loss functions matched with the whole network structure. We conduct experiments on the popular PASCAL VOC 2012 benchmarks, and our model yields state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/2110.03982

PDF

https://arxiv.org/pdf/2110.03982.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot