Paper Reading AI Learner

Spatial-temporal V-Net for automatic segmentation and quantification of right ventricles in gated myocardial perfusion SPECT images

2021-10-11 17:30:51
Chen Zhao, Shi Shi, Zhuo He, Cheng Wang, Zhongqiang Zhao, Xinli Li, Yanli Zhou, Weihua Zhou

Abstract

Background. Functional assessment of right ventricles (RV) using gated myocardial perfusion single-photon emission computed tomography (MPS) heavily relies on the precise extraction of right ventricular contours. In this paper, we present a new deep learning model integrating both the spatial and temporal features in SPECT images to perform the segmentation of RV epicardium and endocardium. Methods. By integrating the spatial features from each cardiac frame of gated MPS and the temporal features from the sequential cardiac frames of the gated MPS, we develop a Spatial-Temporal V-Net (S-T-V-Net) for automatic extraction of RV endocardial and epicardial contours. In the S-T-V-Net, a V-Net is employed to hierarchically extract spatial features, and convolutional long-term short-term memory (ConvLSTM) units are added to the skip-connection pathway to extract the temporal features. The input of the S-T-V-Net is an ECG-gated sequence of the SPECT images and the output is the probability map of the endocardial or epicardial masks. A Dice similarity coefficient (DSC) loss which penalizes the discrepancy between the model prediction and the ground truth is adopted to optimize the segmentation model. Results. Our segmentation model was trained and validated on a retrospective dataset with 34 subjects, and the cardiac cycle of each subject was divided into 8 gates. The proposed ST-V-Net achieved a DSC of 0.7924 and 0.8227 for the RV endocardium and epicardium, respectively. The mean absolute error, the mean squared error, and the Pearson correlation coefficient of the RV ejection fraction between the ground truth and the model prediction are 0.0907, 0.0130 and 0.8411. Conclusion. The results demonstrate that the proposed ST-V-Net is an effective model for RV segmentation. It has great promise for clinical use in RV functional assessment.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05443

PDF

https://arxiv.org/pdf/2110.05443.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot