Paper Reading AI Learner

SuperShaper: Task-Agnostic Super Pre-training of BERT Models with Variable Hidden Dimensions

2021-10-10 05:44:02
Vinod Ganesan, Gowtham Ramesh, Pratyush Kumar

Abstract

Task-agnostic pre-training followed by task-specific fine-tuning is a default approach to train NLU models. Such models need to be deployed on devices across the cloud and the edge with varying resource and accuracy constraints. For a given task, repeating pre-training and fine-tuning across tens of devices is prohibitively expensive. We propose SuperShaper, a task agnostic pre-training approach which simultaneously pre-trains a large number of Transformer models by varying shapes, i.e., by varying the hidden dimensions across layers. This is enabled by a backbone network with linear bottleneck matrices around each Transformer layer which are sliced to generate differently shaped sub-networks. In spite of its simple design space and efficient implementation, SuperShaper discovers networks that effectively trade-off accuracy and model size: Discovered networks are more accurate than a range of hand-crafted and automatically searched networks on GLUE benchmarks. Further, we find two critical advantages of shape as a design variable for Neural Architecture Search (NAS): (a) heuristics of good shapes can be derived and networks found with these heuristics match and even improve on carefully searched networks across a range of parameter counts, and (b) the latency of networks across multiple CPUs and GPUs are insensitive to the shape and thus enable device-agnostic search. In summary, SuperShaper radically simplifies NAS for language models and discovers networks that generalize across tasks, parameter constraints, and devices.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04711

PDF

https://arxiv.org/pdf/2110.04711.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot