Paper Reading AI Learner

Compressibility of Distributed Document Representations

2021-10-14 17:56:35
Blaž Škrlj, Matej Petkovič

Abstract

Contemporary natural language processing (NLP) revolves around learning from latent document representations, generated either implicitly by neural language models or explicitly by methods such as doc2vec or similar. One of the key properties of the obtained representations is their dimension. Whilst the commonly adopted dimensions of 256 and 768 offer sufficient performance on many tasks, it is many times unclear whether the default dimension is the most suitable choice for the subsequent downstream learning tasks. Furthermore, representation dimensions are seldom subject to hyperparameter tuning due to computational constraints. The purpose of this paper is to demonstrate that a surprisingly simple and efficient recursive compression procedure can be sufficient to both significantly compress the initial representation, but also potentially improve its performance when considering the task of text classification. Having smaller and less noisy representations is the desired property during deployment, as orders of magnitude smaller models can significantly reduce the computational overload and with it the deployment costs. We propose CoRe, a straightforward, representation learner-agnostic framework suitable for representation compression. The CoRe's performance is showcased and studied on a collection of 17 real-life corpora from biomedical, news, social media, and literary domains. We explored CoRe's behavior when considering contextual and non-contextual document representations, different compression levels, and 9 different compression algorithms. Current results based on more than 100,000 compression experiments indicate that recursive Singular Value Decomposition offers a very good trade-off between the compression efficiency and performance, making CoRe useful in many existing, representation-dependent NLP pipelines.

Abstract (translated)

URL

https://arxiv.org/abs/2110.07595

PDF

https://arxiv.org/pdf/2110.07595.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot