Paper Reading AI Learner

Adversarial Scene Reconstruction and Object Detection System for Assisting Autonomous Vehicle

2021-10-13 09:06:16
Md Foysal Haque, Hay-Youn Lim, Dae-Seong Kang

Abstract

In the current computer vision era classifying scenes through video surveillance systems is a crucial task. Artificial Intelligence (AI) Video Surveillance technologies have been advanced remarkably while artificial intelligence and deep learning ascended into the system. Adopting the superior compounds of deep learning visual classification methods achieved enormous accuracy in classifying visual scenes. However, the visual classifiers face difficulties examining the scenes in dark visible areas, especially during the nighttime. Also, the classifiers face difficulties in identifying the contexts of the scenes. This paper proposed a deep learning model that reconstructs dark visual scenes to clear scenes like daylight, and the method recognizes visual actions for the autonomous vehicle. The proposed model achieved 87.3 percent accuracy for scene reconstruction and 89.2 percent in scene understanding and detection tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2110.07716

PDF

https://arxiv.org/pdf/2110.07716.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot