Paper Reading AI Learner

A Deep Insight into Measuring Face Image Utility with General and Face-specific Image Quality Metrics

2021-10-21 12:56:38
Biying Fu, Cong Chen, Olaf Henniger, Naser Damer

Abstract

Quality scores provide a measure to evaluate the utility of biometric samples for biometric recognition. Biometric recognition systems require high-quality samples to achieve optimal performance. This paper focuses on face images and the measurement of face image utility with general and face-specific image quality metrics. While face-specific metrics rely on features of aligned face images, general image quality metrics can be used on the global image and relate to human perceptions. In this paper, we analyze the gap between the general image quality metrics and the face image quality metrics. Our contribution lies in a thorough examination of how different the image quality assessment algorithms relate to the utility for the face recognition task. The results of image quality assessment algorithms are further compared with those of dedicated face image quality assessment algorithms. In total, 25 different quality metrics are evaluated on three face image databases, BioSecure, LFW, and VGGFace2 using three open-source face recognition solutions, SphereFace, ArcFace, and FaceNet. Our results reveal a clear correlation between learned image metrics to face image utility even without being specifically trained as a face utility measure. Individual handcrafted features lack general stability and perform significantly worse than general face-specific quality metrics. We additionally provide a visual insight into the image areas contributing to the quality score of a selected set of quality assessment methods.

Abstract (translated)

URL

https://arxiv.org/abs/2110.11111

PDF

https://arxiv.org/pdf/2110.11111.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot