Paper Reading AI Learner

Event and Activity Recognition in Video Surveillance for Cyber-Physical Systems

2021-11-03 08:30:38
Swarnabja Bhaumik, Prithwish Jana, Partha Pratim Mohanta

Abstract

This chapter aims to aid the development of Cyber-Physical Systems (CPS) in automated understanding of events and activities in various applications of video-surveillance. These events are mostly captured by drones, CCTVs or novice and unskilled individuals on low-end devices. Being unconstrained, these videos are immensely challenging due to a number of quality factors. We present an extensive account of the various approaches taken to solve the problem over the years. This ranges from methods as early as Structure from Motion (SFM) based approaches to recent solution frameworks involving deep neural networks. We show that the long-term motion patterns alone play a pivotal role in the task of recognizing an event. Consequently each video is significantly represented by a fixed number of key-frames using a graph-based approach. Only the temporal features are exploited using a hybrid Convolutional Neural Network (CNN) + Recurrent Neural Network (RNN) architecture. The results we obtain are encouraging as they outperform standard temporal CNNs and are at par with those using spatial information along with motion cues. Further exploring multistream models, we conceive a multi-tier fusion strategy for the spatial and temporal wings of a network. A consolidated representation of the respective individual prediction vectors on video and frame levels is obtained using a biased conflation technique. The fusion strategy endows us with greater rise in precision on each stage as compared to the state-of-the-art methods, and thus a powerful consensus is achieved in classification. Results are recorded on four benchmark datasets widely used in the domain of action recognition, namely CCV, HMDB, UCF-101 and KCV. It is inferable that focusing on better classification of the video sequences certainly leads to robust actuation of a system designed for event surveillance and object cum activity tracking.

Abstract (translated)

URL

https://arxiv.org/abs/2111.02064

PDF

https://arxiv.org/pdf/2111.02064.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot