Deformable templates, or atlases, are images that represent a prototypical anatomy for a population, and are often enhanced with probabilistic anatomical label maps. They are commonly used in medical image analysis for population studies and computational anatomy tasks such as registration and segmentation. Because developing a template is a computationally expensive process, relatively few templates are available. As a result, analysis is often conducted with sub-optimal templates that are not truly representative of the study population, especially when there are large variations within this population. We propose a machine learning framework that uses convolutional registration neural networks to efficiently learn a function that outputs templates conditioned on subject-specific attributes, such as age and sex. We also leverage segmentations, when available, to produce anatomical segmentation maps for the resulting templates. The learned network can also be used to register subject images to the templates. We demonstrate our method on a compilation of 3D brain MRI datasets, and show that it can learn high-quality templates that are representative of populations. We find that annotated conditional templates enable better registration than their unlabeled unconditional counterparts, and outperform other templates construction methods.
https://arxiv.org/abs/2511.13609
This study presents a systematic evaluation of time-frequency feature design for binaural sound source localization (SSL), focusing on how feature selection influences model performance across diverse conditions. We investigate the performance of a convolutional neural network (CNN) model using various combinations of amplitude-based features (magnitude spectrogram, interaural level difference - ILD) and phase-based features (phase spectrogram, interaural phase difference - IPD). Evaluations on in-domain and out-of-domain data with mismatched head-related transfer functions (HRTFs) reveal that carefully chosen feature combinations often outperform increases in model complexity. While two-feature sets such as ILD + IPD are sufficient for in-domain SSL, generalization to diverse content requires richer inputs combining channel spectrograms with both ILD and IPD. Using the optimal feature sets, our low-complexity CNN model achieves competitive performance. Our findings underscore the importance of feature design in binaural SSL and provide practical guidance for both domain-specific and general-purpose localization.
https://arxiv.org/abs/2511.13487
Group activity detection in multi-person scenes is challenging due to complex human interactions, occlusions, and variations in appearance over time. This work presents a computer vision based framework for group activity recognition and action spotting using a combination of deep learning models and graph based relational reasoning. The system first applies Mask R-CNN to obtain accurate actor localization through bounding boxes and instance masks. Multiple backbone networks, including Inception V3, MobileNet, and VGG16, are used to extract feature maps, and RoIAlign is applied to preserve spatial alignment when generating actor specific features. The mask information is then fused with the feature maps to obtain refined masked feature representations for each actor. To model interactions between individuals, we construct Actor Relation Graphs that encode appearance similarity and positional relations using methods such as normalized cross correlation, sum of absolute differences, and dot product. Graph Convolutional Networks operate on these graphs to reason about relationships and predict both individual actions and group level activities. Experiments on the Collective Activity dataset demonstrate that the combination of mask based feature refinement, robust similarity search, and graph neural network reasoning leads to improved recognition performance across both crowded and non crowded scenarios. This approach highlights the potential of integrating segmentation, feature extraction, and relational graph reasoning for complex video understanding tasks.
https://arxiv.org/abs/2511.13315
We address the challenge of detecting rare and diverse anomalies in surveillance videos using only video-level supervision. Our dual-backbone framework combines convolutional and transformer representations through top-k pooling, achieving 90.7% area under the curve (AUC) on the UCF-Crime dataset.
https://arxiv.org/abs/2511.13276
The American Society of Civil Engineers has graded Americas infrastructure condition as a C, with the road system receiving a dismal D. Roads are vital to regional economic viability, yet their management, maintenance, and repair processes remain inefficient, relying on outdated manual or laser-based inspection methods that are both costly and time-consuming. With the increasing availability of real-time visual data from autonomous vehicles, there is an opportunity to apply computer vision (CV) methods for advanced road monitoring, providing insights to guide infrastructure rehabilitation efforts. This project explores the use of state-of-the-art CV techniques for road distress segmentation. It begins by evaluating synthetic data generated with Generative Adversarial Networks (GANs) to assess its usefulness for model training. The study then applies Convolutional Neural Networks (CNNs) for road distress segmentation and subsequently examines the transformer-based model MaskFormer. Results show that GAN-generated data improves model performance and that MaskFormer outperforms the CNN model in two metrics: mAP50 and IoU.
https://arxiv.org/abs/2511.13145
3D anomaly detection (AD) is a crucial task in computer vision, aiming to identify anomalous points or regions from point cloud data. However, existing methods may encounter challenges when handling point clouds with changes in orientation and position because the resulting features may vary significantly. To address this problem, we propose a novel Rotationally Invariant Features (RIF) framework for 3D AD. Firstly, to remove the adverse effect of variations on point cloud data, we develop a Point Coordinate Mapping (PCM) technique, which maps each point into a rotationally invariant space to maintain consistency of representation. Then, to learn robust and discriminative features, we design a lightweight Convolutional Transform Feature Network (CTF-Net) to extract rotationally invariant features for the memory bank. To improve the ability of the feature extractor, we introduce the idea of transfer learning to pre-train the feature extractor with 3D data augmentation. Experimental results show that the proposed method achieves the advanced performance on the Anomaly-ShapeNet dataset, with an average P-AUROC improvement of 17.7\%, and also gains the best performance on the Real3D-AD dataset, with an average P-AUROC improvement of 1.6\%. The strong generalization ability of RIF has been verified by combining it with traditional feature extraction methods on anomaly detection tasks, demonstrating great potential for industrial applications.
https://arxiv.org/abs/2511.13115
We introduce Medal S, a medical segmentation foundation model that supports native-resolution spatial and textual prompts within an end-to-end trainable framework. Unlike text-only methods lacking spatial awareness, Medal S achieves channel-wise alignment between volumetric prompts and text embeddings, mitigating inaccuracies from resolution mismatches. By preserving full 3D context, it efficiently processes multiple native-resolution masks in parallel, enhancing multi-class segmentation performance. A lightweight 3D convolutional module enables precise voxel-space refinement guided by both prompt types, supporting up to 243 classes across CT, MRI, PET, ultrasound, and microscopy modalities in the BiomedSegFM dataset. Medal S offers two prompting modes: a text-only mode, where model predictions serve as spatial prompts for self-refinement without human input, and a hybrid mode, incorporating manual annotations for enhanced flexibility. For 24-class segmentation, parallel spatial prompting reduces inference time by more than 90% compared to sequential prompting. We propose dynamic resampling to address target-patch ratio imbalance, extending SAT and nnU-Net for data augmentation. Furthermore, we develop optimized text preprocessing, a two-stage inference strategy, and post-processing techniques to improve memory efficiency, precision, and inference speed. On the five-modality average on the validation set, Medal S outperforms SAT with a DSC of 75.44 (vs. 69.83), NSD of 77.34 (vs. 71.06), F1 of 38.24 (vs. 24.88), and DSC TP of 65.46 (vs. 46.97). Medal S achieves excellent performance by harmonizing spatial precision with semantic textual guidance, demonstrating superior efficiency and accuracy in multi-class medical segmentation tasks compared to sequential prompt-based approaches. Medal S will be publicly available at this https URL.
https://arxiv.org/abs/2511.13001
Object 6D pose estimation, a crucial task for robotics and augmented reality applications, becomes particularly challenging when dealing with novel objects whose 3D models are not readily available. To reduce dependency on 3D models, recent studies have explored one-reference-based pose estimation, which requires only a single reference view instead of a complete 3D model. However, existing methods that rely on real-valued coordinate regression suffer from limited global consistency due to the local nature of convolutional architectures and face challenges in symmetric or occluded scenarios owing to a lack of uncertainty modeling. We present CoordAR, a novel autoregressive framework for one-reference 6D pose estimation of unseen objects. CoordAR formulates 3D-3D correspondences between the reference and query views as a map of discrete tokens, which is obtained in an autoregressive and probabilistic manner. To enable accurate correspondence regression, CoordAR introduces 1) a novel coordinate map tokenization that enables probabilistic prediction over discretized 3D space; 2) a modality-decoupled encoding strategy that separately encodes RGB appearance and coordinate cues; and 3) an autoregressive transformer decoder conditioned on both position-aligned query features and the partially generated token sequence. With these novel mechanisms, CoordAR significantly outperforms existing methods on multiple benchmarks and demonstrates strong robustness to symmetry, occlusion, and other challenges in real-world tests.
https://arxiv.org/abs/2511.12919
Automatic sign language recognition plays a crucial role in bridging the communication gap between deaf communities and hearing individuals; however, most available datasets focus on American Sign Language. For Romanian Isolated Sign Language Recognition (RoISLR), no large-scale, standardized dataset exists, which limits research progress. In this work, we introduce a new corpus for RoISLR, named RoCoISLR, comprising over 9,000 video samples that span nearly 6,000 standardized glosses from multiple sources. We establish benchmark results by evaluating seven state-of-the-art video recognition models-I3D, SlowFast, Swin Transformer, TimeSformer, Uniformer, VideoMAE, and PoseConv3D-under consistent experimental setups, and compare their performance with that of the widely used WLASL2000 corpus. According to the results, transformer-based architectures outperform convolutional baselines; Swin Transformer achieved a Top-1 accuracy of 34.1%. Our benchmarks highlight the challenges associated with long-tail class distributions in low-resource sign languages, and RoCoISLR provides the initial foundation for systematic RoISLR research.
https://arxiv.org/abs/2511.12767
Ensuring proper generalization is a critical challenge in applying data-driven methods for solving inverse problems in imaging, as neural networks reconstructing an image must perform well across varied datasets and acquisition geometries. In X-ray Computed Tomography (CT), convolutional neural networks (CNNs) are widely used to filter the projection data but are ill-suited for this task as they apply grid-based convolutions to the sinogram, which inherently lies on a line manifold, not a regular grid. The CNNs, unaware of the geometry, are implicitly tied to it and require an excessive amount of parameters as they must infer the relations between measurements from the data rather than from prior information. The contribution of this paper is twofold. First, we introduce a graph data structure to represent CT acquisition geometries and tomographic data, providing a detailed explanation of the graph's structure for circular, cone-beam geometries. Second, we propose GLM, a hybrid neural network architecture that leverages both graph and grid convolutions to process tomographic data. We demonstrate that GLM outperforms CNNs when performance is quantified in terms of structural similarity and peak signal-to-noise ratio, despite the fact that GLM uses only a fraction of the trainable parameters. Compared to CNNs, GLM also requires significantly less training time and memory, and its memory requirements scale better. Crucially, GLM demonstrates robust generalization to unseen variations in the acquisition geometry, like when training only on fully sampled CT data and then testing on sparse-view CT data.
https://arxiv.org/abs/2511.12730
A long road trip is fun for drivers. However, a long drive for days can be tedious for a driver to accommodate stringent deadlines to reach distant destinations. Such a scenario forces drivers to drive extra miles, utilizing extra hours daily without sufficient rest and breaks. Once a driver undergoes such a scenario, it occasionally triggers drowsiness during driving. Drowsiness in driving can be life-threatening to any individual and can affect other drivers' safety; therefore, a real-time detection system is needed. To identify fatigued facial characteristics in drivers and trigger the alarm immediately, this research develops a real-time driver drowsiness detection system utilizing deep convolutional neural networks (DCNNs) and this http URL proposed and implemented model takes real- time facial images of a driver using a live camera and utilizes a Python-based library named OpenCV to examine the facial images for facial landmarks like sufficient eye openings and yawn-like mouth movements. The DCNNs framework then gathers the data and utilizes a per-trained model to detect the drowsiness of a driver using facial landmarks. If the driver is identified as drowsy, the system issues a continuous alert in real time, embedded in the Smart Car this http URL potentially saving innocent lives on the roadways, the proposed technique offers a non-invasive, inexpensive, and cost-effective way to identify drowsiness. Our proposed and implemented DCNNs embedded drowsiness detection model successfully react with NTHU-DDD dataset and Yawn-Eye-Dataset with drowsiness detection classification accuracy of 99.6% and 97% respectively.
https://arxiv.org/abs/2511.12438
We introduce MSLoRA, a backbone-agnostic, parameter-efficient adapter that reweights feature responses rather than re-tuning the underlying backbone. Existing low-rank adaptation methods are mostly confined to vision transformers (ViTs) and struggle to generalize across architectures. MSLoRA unifies adaptation for both convolutional neural networks (CNNs) and ViTs by combining a low-rank linear projection with a multi-scale nonlinear transformation that jointly modulates spatial and channel attention. The two components are fused through pointwise multiplication and a residual connection, yielding a lightweight module that shifts feature attention while keeping pretrained weights frozen. Extensive experiments demonstrate that MSLoRA consistently improves transfer performance on classification, detection, and segmentation tasks with roughly less than 5\% of backbone parameters. The design further enables stable optimization, fast convergence, and strong cross-architecture generalization. By reweighting rather than re-tuning, MSLoRA provides a simple and universal approach for efficient adaptation of frozen vision backbones.
https://arxiv.org/abs/2511.12400
The objective of this study is to diagnose and differentiate kidney stones, cysts, and tumors using Computed Tomography (CT) images of the kidney. This study leverages a hybrid quantum-classical framework in this regard. We combine a pretrained ResNet50 encoder, with a Quantum Convolutional Neural Network (QCNN) to explore quantum-assisted diagnosis. We pre-process the kidney images using denoising and contrast limited adaptive histogram equalization to enhance feature extraction. We address class imbalance through data augmentation and weighted sampling. Latent features extracted by the encoder are transformed into qubits via angle encoding and processed by a QCNN. The model is evaluated on both 8-qubit and 12-qubit configurations. Both architectures achieved rapid convergence with stable learning curves and high consistency between training and validation performance. The models reached a test accuracy of 0.99, with the 12-qubit configuration providing improvements in overall recall and precision, particularly for Cyst and Tumor detection, where it achieved perfect recall for Cysts and a tumor F1-score of 0.9956. Confusion matrix analysis further confirmed reliable classification behavior across all classes, with very few misclassifications. Results demonstrate that integrating classical pre-processing and deep feature extraction with quantum circuits enhances medical diagnostic performance.
https://arxiv.org/abs/2511.12386
Hyperspectral image (HSI) classification faces critical challenges, including high spectral dimensionality, complex spectral-spatial correlations, and limited training samples with severe class imbalance. While CNNs excel at local feature extraction and transformers capture long-range dependencies, their isolated application yields suboptimal results due to quadratic complexity and insufficient inductive biases. We propose CLAReSNet (Convolutional Latent Attention Residual Spectral Network), a hybrid architecture that integrates multi-scale convolutional extraction with transformer-style attention via an adaptive latent bottleneck. The model employs a multi-scale convolutional stem with deep residual blocks and an enhanced Convolutional Block Attention Module for hierarchical spatial features, followed by spectral encoder layers combining bidirectional RNNs (LSTM/GRU) with Multi-Scale Spectral Latent Attention (MSLA). MSLA reduces complexity from $\mathcal{O}(T^2D)$ to $\mathcal{O}(T\log(T)D)$ by adaptive latent token allocation (8-64 tokens) that scales logarithmically with the sequence length. Hierarchical cross-attention fusion dynamically aggregates multi-level representations for robust classification. Experiments conducted on the Indian Pines and Salinas datasets show state-of-the-art performance, achieving overall accuracies of 99.71% and 99.96%, significantly surpassing HybridSN, SSRN, and SpectralFormer. The learned embeddings exhibit superior inter-class separability and compact intra-class clustering, validating CLAReSNet's effectiveness under limited samples and severe class imbalance.
https://arxiv.org/abs/2511.12346
Spiking neural networks (SNNs) communicate via discrete spikes in time rather than continuous activations. Their event-driven nature offers advantages for temporal processing and energy efficiency on resource-constrained hardware, but training and deployment remain challenging. We present a lightweight C-based runtime for SNN inference on edge devices and optimizations that reduce latency and memory without sacrificing accuracy. Trained models exported from SNNTorch are translated to a compact C representation; static, cache-friendly data layouts and preallocation avoid interpreter and allocation overheads. We further exploit sparse spiking activity to prune inactive neurons and synapses, shrinking computation in upstream convolutional layers. Experiments on N-MNIST and ST-MNIST show functional parity with the Python baseline while achieving ~10 speedups on desktop CPU and additional gains with pruning, together with large memory reductions that enable microcontroller deployment (Arduino Portenta H7). Results indicate that SNNs can be executed efficiently on conventional embedded platforms when paired with an optimized runtime and spike-driven model compression. Code: this https URL
https://arxiv.org/abs/2511.12136
Deep learning is transforming microscopy, yet models often fail when applied to images from new instruments or acquisition settings. Conventional adversarial domain adaptation (ADDA) retrains entire networks, often disrupting learned semantic representations. Here, we overturn this paradigm by showing that adapting only the earliest convolutional layers, while freezing deeper layers, yields reliable transfer. Building on this principle, we introduce Subnetwork Image Translation ADDA with automatic depth selection (SIT-ADDA-Auto), a self-configuring framework that integrates shallow-layer adversarial alignment with predictive uncertainty to automatically select adaptation depth without target labels. We demonstrate robustness via multi-metric evaluation, blinded expert assessment, and uncertainty-depth ablations. Across exposure and illumination shifts, cross-instrument transfer, and multiple stains, SIT-ADDA improves reconstruction and downstream segmentation over full-encoder adaptation and non-adversarial baselines, with reduced drift of semantic features. Our results provide a design rule for label-free adaptation in microscopy and a recipe for field settings; the code is publicly available.
https://arxiv.org/abs/2511.12006
This study presents a comparative analysis of three U-Net-based architectures for semantic segmentation of rock art petroglyphs from Brazilian archaeological sites. The investigated architectures were: (1) BEGL-UNet with Border-Enhanced Gaussian Loss function; (2) Attention-Residual BEGL-UNet, incorporating residual blocks and gated attention mechanisms; and (3) Spatial Channel Attention BEGL-UNet, which employs spatial-channel attention modules based on Convolutional Block Attention Module. All implementations employed the BEGL loss function combining binary cross-entropy with Gaussian edge enhancement. Experiments were conducted on images from the Poço da Bebidinha Archaeological Complex, PiauÃ, Brazil, using 5-fold cross-validation. Among the architectures, Attention-Residual BEGL-UNet achieved the best overall performance with Dice Score of 0.710, validation loss of 0.067, and highest recall of 0.854. Spatial Channel Attention BEGL-UNet obtained comparable performance with DSC of 0.707 and recall of 0.857. The baseline BEGL-UNet registered DSC of 0.690. These results demonstrate the effectiveness of attention mechanisms for archaeological heritage digital preservation, with Dice Score improvements of 2.5-2.9% over the baseline.
https://arxiv.org/abs/2511.11959
Chess has experienced a large increase in viewership since the pandemic, driven largely by the accessibility of online learning platforms. However, no equivalent assistance exists for physical chess games, creating a divide between analog and digital chess experiences. This paper presents CVChess, a deep learning framework for converting chessboard images to Forsyth-Edwards Notation (FEN), which is later input into online chess engines to provide you with the best next move. Our approach employs a convolutional neural network (CNN) with residual layers to perform piece recognition from smartphone camera images. The system processes RGB images of a physical chess board through a multistep process: image preprocessing using the Hough Line Transform for edge detection, projective transform to achieve a top-down board alignment, segmentation into 64 individual squares, and piece classification into 13 classes (6 unique white pieces, 6 unique black pieces and an empty square) using the residual CNN. Residual connections help retain low-level visual features while enabling deeper feature extraction, improving accuracy and stability during training. We train and evaluate our model using the Chess Recognition Dataset (ChessReD), containing 10,800 annotated smartphone images captured under diverse lighting conditions and angles. The resulting classifications are encoded as an FEN string, which can be fed into a chess engine to generate the most optimal move
https://arxiv.org/abs/2511.11522
Extracting digital material representations from images is a necessary prerequisite for a quantitative analysis of material properties. Different segmentation approaches have been extensively studied in the past to achieve this task, but were often lacking accuracy or speed. With the advent of machine learning, supervised convolutional neural networks (CNNs) have achieved state-of-the-art performance for different segmentation tasks. However, these models are often trained in a supervised manner, which requires large labeled datasets. Unsupervised approaches do not require ground-truth data for learning, but suffer from long segmentation times and often worse segmentation accuracy. Hidden Markov Random Fields (HMRF) are an unsupervised segmentation approach that incorporates concepts of neighborhood and class distributions. We present a method that integrates HMRF theory and CNN segmentation, leveraging the advantages of both areas: unsupervised learning and fast segmentation times. We investigate the contribution of different neighborhood terms and components for the unsupervised HMRF loss. We demonstrate that the HMRF-UNet enables high segmentation accuracy without ground truth on a Micro-Computed Tomography (${\mu}$CT) image dataset of Polyurethane (PU) foam structures. Finally, we propose and demonstrate a pre-training strategy that considerably reduces the required amount of ground-truth data when training a segmentation model.
https://arxiv.org/abs/2511.11378
This study presents a transfer-learning framework based on Convolutional Gated Recurrent Units (ConvGRU) for short-term rainfall prediction in the Weather4Cast 2025 competition. A single SEVIRI infrared channel (10.8 {\mu}m wavelength) is used as input, which consists of four observations over a one-hour period. A two-stage training strategy is applied to generate rainfall estimates up to four hours ahead. In the first stage, ConvGRU is trained to forecast the brightness temperatures from SEVIRI, enabling the model to capture relevant spatiotemporal patterns. In the second stage, an empirically derived nonlinear transformation maps the predicted fields to OPERA-compatible rainfall rates. For the event-prediction task, the transformed rainfall forecasts are processed using 3D event detection followed by spatiotemporal feature extraction to identify and characterize precipitation events. Our submission achieved 2nd place in the cumulative rainfall task. Further, the same model was used out-of-the-box for the event prediction task, and resulted in similar scores as the baseline model to the competition.
https://arxiv.org/abs/2511.11197