We introduce Stereo Anywhere, a novel stereo-matching framework that combines geometric constraints with robust priors from monocular depth Vision Foundation Models (VFMs). By elegantly coupling these complementary worlds through a dual-branch architecture, we seamlessly integrate stereo matching with learned contextual cues. Following this design, our framework introduces novel cost volume fusion mechanisms that effectively handle critical challenges such as textureless regions, occlusions, and non-Lambertian surfaces. Through our novel optical illusion dataset, MonoTrap, and extensive evaluation across multiple benchmarks, we demonstrate that our synthetic-only trained model achieves state-of-the-art results in zero-shot generalization, significantly outperforming existing solutions while showing remarkable robustness to challenging cases such as mirrors and transparencies.
https://arxiv.org/abs/2412.04472
Graphical User Interfaces (GUIs) are critical to human-computer interaction, yet automating GUI tasks remains challenging due to the complexity and variability of visual environments. Existing approaches often rely on textual representations of GUIs, which introduce limitations in generalization, efficiency, and scalability. In this paper, we introduce Aguvis, a unified pure vision-based framework for autonomous GUI agents that operates across various platforms. Our approach leverages image-based observations, and grounding instructions in natural language to visual elements, and employs a consistent action space to ensure cross-platform generalization. To address the limitations of previous work, we integrate explicit planning and reasoning within the model, enhancing its ability to autonomously navigate and interact with complex digital environments. We construct a large-scale dataset of GUI agent trajectories, incorporating multimodal reasoning and grounding, and employ a two-stage training pipeline that first focuses on general GUI grounding, followed by planning and reasoning. Through comprehensive experiments, we demonstrate that Aguvis surpasses previous state-of-the-art methods in both offline and real-world online scenarios, achieving, to our knowledge, the first fully autonomous pure vision GUI agent capable of performing tasks independently without collaboration with external closed-source models. We open-sourced all datasets, models, and training recipes to facilitate future research at this https URL.
https://arxiv.org/abs/2412.04454
The advent of Multimodal Large Language Models, leveraging the power of Large Language Models, has recently demonstrated superior multimodal understanding and reasoning abilities, heralding a new era for artificial general intelligence. However, achieving AGI necessitates more than just comprehension and reasoning. A crucial capability required is effective planning in diverse scenarios, which involves making reasonable decisions based on complex environments to solve real-world problems. Despite its importance, the planning abilities of current MLLMs in varied scenarios remain underexplored. In this paper, we introduce EgoPlan-Bench2, a rigorous and comprehensive benchmark designed to assess the planning capabilities of MLLMs across a wide range of real-world scenarios. EgoPlan-Bench2 encompasses everyday tasks spanning 4 major domains and 24 detailed scenarios, closely aligned with human daily life. EgoPlan-Bench2 is constructed through a semi-automatic process utilizing egocentric videos, complemented by manual verification. Grounded in a first-person perspective, it mirrors the way humans approach problem-solving in everyday life. We evaluate 21 competitive MLLMs and provide an in-depth analysis of their limitations, revealing that they face significant challenges in real-world planning. To further improve the planning proficiency of current MLLMs, we propose a training-free approach using multimodal Chain-of-Thought (CoT) prompting through investigating the effectiveness of various multimodal prompts in complex planning. Our approach enhances the performance of GPT-4V by 10.24 on EgoPlan-Bench2 without additional training. Our work not only sheds light on the current limitations of MLLMs in planning, but also provides insights for future enhancements in this critical area. We have made data and code available at this https URL.
https://arxiv.org/abs/2412.04447
3D semantic occupancy prediction is an important task for robust vision-centric autonomous driving, which predicts fine-grained geometry and semantics of the surrounding scene. Most existing methods leverage dense grid-based scene representations, overlooking the spatial sparsity of the driving scenes. Although 3D semantic Gaussian serves as an object-centric sparse alternative, most of the Gaussians still describe the empty region with low efficiency. To address this, we propose a probabilistic Gaussian superposition model which interprets each Gaussian as a probability distribution of its neighborhood being occupied and conforms to probabilistic multiplication to derive the overall geometry. Furthermore, we adopt the exact Gaussian mixture model for semantics calculation to avoid unnecessary overlapping of Gaussians. To effectively initialize Gaussians in non-empty region, we design a distribution-based initialization module which learns the pixel-aligned occupancy distribution instead of the depth of surfaces. We conduct extensive experiments on nuScenes and KITTI-360 datasets and our GaussianFormer-2 achieves state-of-the-art performance with high efficiency. Code: this https URL.
https://arxiv.org/abs/2412.04384
Standard single-image super-resolution (SR) upsamples and restores entire images. Yet several real-world applications require higher resolutions only in specific regions, such as license plates or faces, making the super-resolution of the entire image, along with the associated memory and computational cost, unnecessary. We propose a novel task, called LocalSR, to restore only local regions of the low-resolution image. For this problem setting, we propose a context-based local super-resolution (CLSR) to super-resolve only specified regions of interest (ROI) while leveraging the entire image as context. Our method uses three parallel processing modules: a base module for super-resolving the ROI, a global context module for gathering helpful features from across the image, and a proximity integration module for concentrating on areas surrounding the ROI, progressively propagating features from distant pixels to the target region. Experimental results indicate that our approach, with its reduced low complexity, outperforms variants that focus exclusively on the ROI.
https://arxiv.org/abs/2412.04314
Geospatial Foundation Models (GFMs) have emerged as powerful tools for extracting representations from Earth observation data, but their evaluation remains inconsistent and narrow. Existing works often evaluate on suboptimal downstream datasets and tasks, that are often too easy or too narrow, limiting the usefulness of the evaluations to assess the real-world applicability of GFMs. Additionally, there is a distinct lack of diversity in current evaluation protocols, which fail to account for the multiplicity of image resolutions, sensor types, and temporalities, which further complicates the assessment of GFM performance. In particular, most existing benchmarks are geographically biased towards North America and Europe, questioning the global applicability of GFMs. To overcome these challenges, we introduce PANGAEA, a standardized evaluation protocol that covers a diverse set of datasets, tasks, resolutions, sensor modalities, and temporalities. It establishes a robust and widely applicable benchmark for GFMs. We evaluate the most popular GFMs openly available on this benchmark and analyze their performance across several domains. In particular, we compare these models to supervised baselines (e.g. UNet and vanilla ViT), and assess their effectiveness when faced with limited labeled data. Our findings highlight the limitations of GFMs, under different scenarios, showing that they do not consistently outperform supervised models. PANGAEA is designed to be highly extensible, allowing for the seamless inclusion of new datasets, models, and tasks in future research. By releasing the evaluation code and benchmark, we aim to enable other researchers to replicate our experiments and build upon our work, fostering a more principled evaluation protocol for large pre-trained geospatial models. The code is available at this https URL.
https://arxiv.org/abs/2412.04204
One of the strategies to detect the pose and shape of unknown objects is their geometric modeling, consisting on fitting known geometric entities. Classical geometric modeling fits simple shapes such as spheres or cylinders, but often those don't cover the variety of shapes that can be encountered. For those situations, one solution is the use of superquadrics, which can adapt to a wider variety of shapes. One of the limitations of superquadrics is that they cannot model objects with holes, such as those with handles. This work aims to fit supersurfaces of degree four, in particular supertoroids, to objects with a single hole. Following the results of superquadrics, simple expressions for the major and minor radial distances are derived, which lead to the fitting of the intrinsic and extrinsic parameters of the supertoroid. The differential geometry of the surface is also studied as a function of these parameters. The result is a supergeometric modeling that can be used for symmetric objects with and without holes with a simple distance function for the fitting. The proposed algorithm expands considerably the amount of shapes that can be targeted for geometric modeling.
https://arxiv.org/abs/2412.04174
Microfluidic devices are increasingly used in biological and chemical experiments due to their cost-effectiveness for rheological estimation in fluids. However, these devices often face challenges in terms of accuracy, size, and cost. This study presents a methodology, integrating deep learning, modeling and simulation to enhance the design of microfluidic systems, used to develop an innovative approach for viscosity measurement of polymer melts. We use synthetic data generated from the simulations to train a deep learning model, which then identifies rheological parameters of polymer melts from pressure drop and flow rate measurements in a microfluidic circuit, enabling online estimation of fluid properties. By improving the accuracy and flexibility of microfluidic rheological estimation, our methodology accelerates the design and testing of microfluidic devices, reducing reliance on physical prototypes, and offering significant contributions to the field.
https://arxiv.org/abs/2412.04142
Finite Element Analysis (FEA) is a powerful but computationally intensive method for simulating physical phenomena. Recent advancements in machine learning have led to surrogate models capable of accelerating FEA. Yet there are still limitations in developing surrogates of transient FEA models that can simultaneously predict the solutions for both nodes and elements with applicability on both the 2D and 3D domains. Motivated by this research gap, this study proposes DeepFEA, a deep learning-based framework that leverages a multilayer Convolutional Long Short-Term Memory (ConvLSTM) network branching into two parallel convolutional neural networks to predict the solutions for both nodes and elements of FEA models. The proposed network is optimized using a novel adaptive learning algorithm, called Node-Element Loss Optimization (NELO). NELO minimizes the error occurring at both branches of the network enabling the prediction of solutions for transient FEA simulations. The experimental evaluation of DeepFEA is performed on three datasets in the context of structural mechanics, generated to serve as publicly available reference datasets. The results show that DeepFEA can achieve less than 3% normalized mean and root mean squared error for 2D and 3D simulation scenarios, and inference times that are two orders of magnitude faster than FEA. In contrast, relevant state-of-the-art methods face challenges with multi-dimensional output and dynamic input prediction. Furthermore, DeepFEA's robustness was demonstrated in a real-life biomedical scenario, confirming its suitability for accurate and efficient predictions of FEA simulations.
https://arxiv.org/abs/2412.04121
Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages.
https://arxiv.org/abs/2412.04003
We introduce a novel approach for high-resolution talking head generation from a single image and audio input. Prior methods using explicit face models, like 3D morphable models (3DMM) and facial landmarks, often fall short in generating high-fidelity videos due to their lack of appearance-aware motion representation. While generative approaches such as video diffusion models achieve high video quality, their slow processing speeds limit practical application. Our proposed model, Implicit Face Motion Diffusion Model (IF-MDM), employs implicit motion to encode human faces into appearance-aware compressed facial latents, enhancing video generation. Although implicit motion lacks the spatial disentanglement of explicit models, which complicates alignment with subtle lip movements, we introduce motion statistics to help capture fine-grained motion information. Additionally, our model provides motion controllability to optimize the trade-off between motion intensity and visual quality during inference. IF-MDM supports real-time generation of 512x512 resolution videos at up to 45 frames per second (fps). Extensive evaluations demonstrate its superior performance over existing diffusion and explicit face models. The code will be released publicly, available alongside supplementary materials. The video results can be found on this https URL.
https://arxiv.org/abs/2412.04000
Dynamic scene reconstruction from monocular video is critical for real-world applications. This paper tackles the dual challenges of dynamic novel-view synthesis and 3D geometry reconstruction by introducing a hybrid framework: Deformable Gaussian Splatting and Dynamic Neural Surfaces (DGNS), in which both modules can leverage each other for both tasks. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Simultaneously, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. To further refine depth supervision, we introduce a depth-filtering process on depth maps derived from Gaussian rasterization. Extensive experiments on public datasets demonstrate that DGNS achieves state-of-the-art performance in both novel-view synthesis and 3D reconstruction.
https://arxiv.org/abs/2412.03910
Data is essential to train and fine-tune today's frontier artificial intelligence (AI) models and to develop future ones. To date, academic, legal, and regulatory work has primarily addressed how data can directly harm consumers and creators, such as through privacy breaches, copyright infringements, and bias and discrimination. Our work, instead, focuses on the comparatively neglected question of how data can enable new governance capacities for frontier AI models. This approach for "frontier data governance" opens up new avenues for monitoring and mitigating risks from advanced AI models, particularly as they scale and acquire specific dangerous capabilities. Still, frontier data governance faces challenges that stem from the fundamental properties of data itself: data is non-rival, often non-excludable, easily replicable, and increasingly synthesizable. Despite these inherent difficulties, we propose a set of policy mechanisms targeting key actors along the data supply chain, including data producers, aggregators, model developers, and data vendors. We provide a brief overview of 15 governance mechanisms, of which we centrally introduce five, underexplored policy recommendations. These include developing canary tokens to detect unauthorized use for producers; (automated) data filtering to remove malicious content for pre-training and post-training datasets; mandatory dataset reporting requirements for developers and vendors; improved security for datasets and data generation algorithms; and know-your-customer requirements for vendors. By considering data not just as a source of potential harm, but as a critical governance lever, this work aims to equip policymakers with a new tool for the governance and regulation of frontier AI models.
https://arxiv.org/abs/2412.03824
Large language models (LLMs) are increasingly deployed via public-facing interfaces to interact with millions of users, each with diverse preferences. Despite this, preference tuning of LLMs predominantly relies on reward models trained using binary judgments where annotators select the preferred choice out of pairs of model outputs. In this work, we argue that this reliance on binary choices does not capture the broader, aggregate preferences of the target user in real-world tasks. We propose a taxonomy that identifies two dimensions of subjectivity where different users disagree on the preferred output-namely, the Plurality of Responses to Prompts, where prompts allow for multiple correct answers, and the Indistinguishability of Responses, where candidate outputs are paraphrases of each other. We show that reward models correlate weakly with user preferences in these cases. As a first step to address this issue, we introduce a simple yet effective method that augments existing binary preference datasets with synthetic preference judgments to estimate potential user disagreement. Incorporating these via a margin term as a form of regularization during model training yields predictions that better align with the aggregate user preferences.
https://arxiv.org/abs/2412.03822
The world can be a complex and difficult place to navigate. People with High-Functioning Autistic Spectrum Disorder as well as general social ineptitude often face navigation challenges that individuals of other demographics simply do not themselves. This can become even more pronounced with people of that specific group when they are in their teenage years and early adulthood (that being the usual age range of college students). When they are at such a vulnerable age, they can be far more susceptible to the struggles of becoming comfortable and content with social interactions as well as having strong relationships (outside their immediate family). Concerning this, the rapid emergence of artificial intelligence chatbots has led to many of them being used to benefit people of different ages and demographics with easy accessibility. With this, if there is anything that people with High-Functioning ASD and social ineptitude want when it comes to guidance towards self-improvement, surely easy accessibility would be one. What are the potential benefits and limitations of using a Mindstudio AI-powered chatbot to provide mental health support for teens and young adults with the aforementioned conditions? What could be done with a tool like this to help those individuals navigate ethical dilemmas within different social environments to reduce existing social tensions? This paper addresses these queries and offers insights to inform future discussions on the subject.
https://arxiv.org/abs/2412.03740
We introduce JPC, a JAX library for training neural networks with Predictive Coding. JPC provides a simple, fast and flexible interface to train a variety of PC networks (PCNs) including discriminative, generative and hybrid models. Unlike existing libraries, JPC leverages ordinary differential equation solvers to integrate the gradient flow inference dynamics of PCNs. We find that a second-order solver achieves significantly faster runtimes compared to standard Euler integration, with comparable performance on a range of tasks and network depths. JPC also provides some theoretical tools that can be used to study PCNs. We hope that JPC will facilitate future research of PC. The code is available at this https URL.
https://arxiv.org/abs/2412.03676
Multimodal language models (MLMs) still face challenges in fundamental visual perception tasks where specialized models excel. Tasks requiring reasoning about 3D structures benefit from depth estimation, and reasoning about 2D object instances benefits from object detection. Yet, MLMs can not produce intermediate depth or boxes to reason over. Finetuning MLMs on relevant data doesn't generalize well and outsourcing computation to specialized vision tools is too compute-intensive and memory-inefficient. To address this, we introduce Perception Tokens, intrinsic image representations designed to assist reasoning tasks where language is insufficient. Perception tokens act as auxiliary reasoning tokens, akin to chain-of-thought prompts in language models. For example, in a depth-related task, an MLM augmented with perception tokens can reason by generating a depth map as tokens, enabling it to solve the problem effectively. We propose AURORA, a training method that augments MLMs with perception tokens for improved reasoning over visual inputs. AURORA leverages a VQVAE to transform intermediate image representations, such as depth maps into a tokenized format and bounding box tokens, which is then used in a multi-task training framework. AURORA achieves notable improvements across counting benchmarks: +10.8% on BLINK, +11.3% on CVBench, and +8.3% on SEED-Bench, outperforming finetuning approaches in generalization across datasets. It also improves on relative depth: over +6% on BLINK. With perception tokens, AURORA expands the scope of MLMs beyond language-based reasoning, paving the way for more effective visual reasoning capabilities.
https://arxiv.org/abs/2412.03548
Reconstructing dynamic urban scenes presents significant challenges due to their intrinsic geometric structures and spatiotemporal dynamics. Existing methods that attempt to model dynamic urban scenes without leveraging priors on potentially moving regions often produce suboptimal results. Meanwhile, approaches based on manual 3D annotations yield improved reconstruction quality but are impractical due to labor-intensive labeling. In this paper, we revisit the potential of 2D semantic maps for classifying dynamic and static Gaussians and integrating spatial and temporal dimensions for urban scene representation. We introduce Urban4D, a novel framework that employs a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation. Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians. To explicitly model dynamic objects, we propose an intuitive and effective 4D Gaussian splatting (4DGS) representation that aggregates temporal information through learnable time embeddings for each Gaussian, predicting their deformations at desired timestamps using a multilayer perceptron (MLP). For more accurate static reconstruction, we also design a k-nearest neighbor (KNN)-based consistency regularization to handle the ground surface due to its low-texture characteristic. Extensive experiments on real-world datasets demonstrate that Urban4D not only achieves comparable or better quality than previous state-of-the-art methods but also effectively captures dynamic objects while maintaining high visual fidelity for static elements.
https://arxiv.org/abs/2412.03473
We present Measure Anything, a comprehensive vision-based framework for dimensional measurement of objects with circular cross-sections, leveraging the Segment Anything Model (SAM). Our approach estimates key geometric features -- including diameter, length, and volume -- for rod-like geometries with varying curvature and general objects with constant skeleton slope. The framework integrates segmentation, mask processing, skeleton construction, and 2D-3D transformation, packaged in a user-friendly interface. We validate our framework by estimating the diameters of Canola stems -- collected from agricultural fields in North Dakota -- which are thin and non-uniform, posing challenges for existing methods. Measuring its diameters is critical, as it is a phenotypic traits that correlates with the health and yield of Canola crops. This application also exemplifies the potential of Measure Anything, where integrating intelligent models -- such as keypoint detection -- extends its scalability to fully automate the measurement process for high-throughput applications. Furthermore, we showcase its versatility in robotic grasping, leveraging extracted geometric features to identify optimal grasp points.
https://arxiv.org/abs/2412.03472
This paper presents PlanarSplatting, an ultra-fast and accurate surface reconstruction approach for multiview indoor images. We take the 3D planes as the main objective due to their compactness and structural expressiveness in indoor scenes, and develop an explicit optimization framework that learns to fit the expected surface of indoor scenes by splatting the 3D planes into 2.5D depth and normal maps. As our PlanarSplatting operates directly on the 3D plane primitives, it eliminates the dependencies on 2D/3D plane detection and plane matching and tracking for planar surface reconstruction. Furthermore, the essential merits of plane-based representation plus CUDA-based implementation of planar splatting functions, PlanarSplatting reconstructs an indoor scene in 3 minutes while having significantly better geometric accuracy. Thanks to our ultra-fast reconstruction speed, the largest quantitative evaluation on the ScanNet and ScanNet++ datasets over hundreds of scenes clearly demonstrated the advantages of our method. We believe that our accurate and ultrafast planar surface reconstruction method will be applied in the structured data curation for surface reconstruction in the future. The code of our CUDA implementation will be publicly available. Project page: this https URL
https://arxiv.org/abs/2412.03451