Vision-Language Models (VLMs) such as CLIP achieve strong zero-shot recognition by comparing image embeddings to text-derived class prototypes. However, under domain shift, they suffer from feature drift, class-prior mismatch, and severe miscalibration. Existing test-time adaptation (TTA) methods often require backpropagation through large backbones, covariance estimation, or heavy memory/state, which is problematic for streaming and edge scenarios. We propose Ultra-Light Test-Time Adaptation (UL-TTA), a fully training-free and backprop-free framework that freezes the backbone and adapts only logit-level parameters: class prototypes, class priors, and temperature. UL-TTA performs an online EM-style procedure with (i) selective sample filtering to use only confident predictions, (ii) closed-form Bayesian updates for prototypes and priors anchored by text and Dirichlet priors, (iii) decoupled temperatures for prediction vs. calibration, and (iv) lightweight guards (norm clipping, prior KL constraints, smoothed temperature) to prevent drift in long streams. Across large-scale cross-domain and OOD benchmarks (PACS, Office-Home, DomainNet, Terra Incognita, ImageNet-R/A/V2/Sketch; ~726K test samples) and strong TTA baselines including Tent, T3A, CoTTA, SAR, Tip-Adapter, and FreeTTA, UL-TTA consistently improves top-1 accuracy (e.g., +4.7 points over zero-shot CLIP on average) while reducing ECE by 20-30%, with less than 8% latency overhead. Long-stream experiments up to 200K samples show no collapse. Our results demonstrate that logit-level Bayesian adaptation is sufficient to obtain state-of-the-art accuracy-calibration trade-offs for VLMs under domain shift, without updating any backbone parameters.
https://arxiv.org/abs/2511.09101
The inference latency of diffusion models remains a critical barrier to their real-time application. While trajectory-based and distribution-based step distillation methods offer solutions, they present a fundamental trade-off. Trajectory-based methods preserve global structure but act as a "lossy compressor", sacrificing high-frequency details. Conversely, distribution-based methods can achieve higher fidelity but often suffer from mode collapse and unstable training. This paper recasts them from independent paradigms into synergistic components within our novel Hierarchical Distillation (HD) framework. We leverage trajectory distillation not as a final generator, but to establish a structural ``sketch", providing a near-optimal initialization for the subsequent distribution-based refinement stage. This strategy yields an ideal initial distribution that enhances the ceiling of overall performance. To further improve quality, we introduce and refine the adversarial training process. We find standard discriminator structures are ineffective at refining an already high-quality generator. To overcome this, we introduce the Adaptive Weighted Discriminator (AWD), tailored for the HD pipeline. By dynamically allocating token weights, AWD focuses on local imperfections, enabling efficient detail refinement. Our approach demonstrates state-of-the-art performance across diverse tasks. On ImageNet $256\times256$, our single-step model achieves an FID of 2.26, rivaling its 250-step teacher. It also achieves promising results on the high-resolution text-to-image MJHQ benchmark, proving its generalizability. Our method establishes a robust new paradigm for high-fidelity, single-step diffusion models.
https://arxiv.org/abs/2511.08930
Learning manipulable representations of the world and its dynamics is central to AI. Joint-Embedding Predictive Architectures (JEPAs) offer a promising blueprint, but lack of practical guidance and theory has led to ad-hoc R&D. We present a comprehensive theory of JEPAs and instantiate it in {\bf LeJEPA}, a lean, scalable, and theoretically grounded training objective. First, we identify the isotropic Gaussian as the optimal distribution that JEPAs' embeddings should follow to minimize downstream prediction risk. Second, we introduce a novel objective--{\bf Sketched Isotropic Gaussian Regularization} (SIGReg)--to constrain embeddings to reach that ideal distribution. Combining the JEPA predictive loss with SIGReg yields LeJEPA with numerous theoretical and practical benefits: (i) single trade-off hyperparameter, (ii) linear time and memory complexity, (iii) stability across hyper-parameters, architectures (ResNets, ViTs, ConvNets) and domains, (iv) heuristics-free, e.g., no stop-gradient, no teacher-student, no hyper-parameter schedulers, and (v) distributed training-friendly implementation requiring only $\approx$50 lines of code. Our empirical validation covers 10+ datasets, 60+ architectures, all with varying scales and domains. As an example, using imagenet-1k for pretraining and linear evaluation with frozen backbone, LeJEPA reaches 79\% with a ViT-H/14. We hope that the simplicity and theory-friendly ecosystem offered by LeJEPA will reestablish self-supervised pre-training as a core pillar of AI research (\href{git@github.com:rbalestr-lab/lejepa.git}{GitHub repo}).
https://arxiv.org/abs/2511.08544
In modern sequential decision-making systems, the construction of an optimal candidate action space is critical to efficient inference. However, existing approaches either rely on manually defined action spaces that lack scalability or utilize unstructured spaces that render exhaustive search computationally prohibitive. In this paper, we propose a novel framework named \textsc{DynaAct} for automatically constructing a compact action space to enhance sequential reasoning in complex problem-solving scenarios. Our method first estimates a proxy for the complete action space by extracting general sketches observed in a corpus covering diverse complex reasoning problems using large language models. We then formulate a submodular function that jointly evaluates candidate actions based on their utility to the current state and their diversity, and employ a greedy algorithm to select an optimal candidate set. Extensive experiments on six diverse standard benchmarks demonstrate that our approach significantly improves overall performance, while maintaining efficient inference without introducing substantial latency. The implementation is available at this https URL.
https://arxiv.org/abs/2511.08043
Generating sketches with specific patterns as expected, i.e., manipulating sketches in a controllable way, is a popular task. Recent studies control sketch features at stroke-level by editing values of stroke embeddings as conditions. However, in order to provide generator a global view about what a sketch is going to be drawn, all these edited conditions should be collected and fed into generator simultaneously before generation starts, i.e., no further manipulation is allowed during sketch generating process. In order to realize sketch drawing manipulation more flexibly, we propose a hierarchical auto-regressive sketch generating process. Instead of generating an entire sketch at once, each stroke in a sketch is generated in a three-staged hierarchy: 1) predicting a stroke embedding to represent which stroke is going to be drawn, and 2) anchoring the predicted stroke on the canvas, and 3) translating the embedding to a sequence of drawing actions to form the full sketch. Moreover, the stroke prediction, anchoring and translation are proceeded auto-regressively, i.e., both the recently generated strokes and their positions are considered to predict the current one, guiding model to produce an appropriate stroke at a suitable position to benefit the full sketch generation. It is flexible to manipulate stroke-level sketch drawing at any time during generation by adjusting the exposed editable stroke embeddings.
https://arxiv.org/abs/2511.07889
Interfaces for contemporary large language, generative media, and perception AI models are often engineered for single user interaction. We investigate ritual as a design scaffold for developing collaborative, multi-user human-AI engagement. We consider the specific case of an immersive staging of the musical Xanadu performed at UCLA in Spring 2025. During a two-week run, over five hundred audience members contributed sketches and jazzercise moves that vision language models translated to virtual scenery elements and from choreographic prompts. This paper discusses four facets of interaction-as-ritual within the show: audience input as offerings that AI transforms into components of the ritual; performers as ritual guides, demonstrating how to interact with technology and sorting audience members into cohorts; AI systems as instruments "played" by the humans, in which sensing, generative components, and stagecraft create systems that can be mastered over time; and reciprocity of interaction, in which the show's AI machinery guides human behavior as well as being guided by humans, completing a human-AI feedback loop that visibly reshapes the virtual world. Ritual served as a frame for integrating linear narrative, character identity, music and interaction. The production explored how AI systems can support group creativity and play, addressing a critical gap in prevailing single user AI design paradigms.
https://arxiv.org/abs/2511.06195
Sketching is a widely used medium for generating and exploring early-stage design concepts. While generative AI (GenAI) chatbots are increasingly used for idea generation, designers often struggle to craft effective prompts and find it difficult to express evolving visual concepts through text alone. In the formative study (N=6), we examined how designers use GenAI during ideation, revealing that text-based prompting disrupts creative flow. To address these issues, we developed TalkSketch, an embedded multimodal AI sketching system that integrates freehand drawing with real-time speech input. TalkSketch aims to support a more fluid ideation process through capturing verbal descriptions during sketching and generating context-aware AI responses. Our work highlights the potential of GenAI tools to engage the design process itself rather than focusing on output.
https://arxiv.org/abs/2511.05817
Recent breakthroughs in language-queried audio source separation (LASS) have shown that generative models can achieve higher separation audio quality than traditional masking-based approaches. However, two key limitations restrict their practical use: (1) users often require operations beyond separation, such as sound removal; and (2) relying solely on text prompts can be unintuitive for specifying sound sources. In this paper, we propose PromptSep to extend LASS into a broader framework for general-purpose sound separation. PromptSep leverages a conditional diffusion model enhanced with elaborated data simulation to enable both audio extraction and sound removal. To move beyond text-only queries, we incorporate vocal imitation as an additional and more intuitive conditioning modality for our model, by incorporating Sketch2Sound as a data augmentation strategy. Both objective and subjective evaluations on multiple benchmarks demonstrate that PromptSep achieves state-of-the-art performance in sound removal and vocal-imitation-guided source separation, while maintaining competitive results on language-queried source separation.
https://arxiv.org/abs/2511.04623
Recent advances in vision-language models have facilitated progress in sketch generation. However, existing specialized methods primarily focus on generic synthesis and lack mechanisms for precise control over sketch styles. In this work, we propose a training-free framework based on diffusion models that enables explicit style guidance via textual prompts and referenced style sketches. Unlike previous style transfer methods that overwrite key and value matrices in self-attention, we incorporate the reference features as auxiliary information with linear smoothing and leverage a style-content guidance mechanism. This design effectively reduces content leakage from reference sketches and enhances synthesis quality, especially in cases with low structural similarity between reference and target sketches. Furthermore, we extend our framework to support controllable multi-style generation by integrating features from multiple reference sketches, coordinated via a joint AdaIN module. Extensive experiments demonstrate that our approach achieves high-quality sketch generation with accurate style alignment and improved flexibility in style control. The official implementation of M3S is available at this https URL.
https://arxiv.org/abs/2511.04123
Focusing on implicit neural representations, we present a novel in situ training protocol that employs limited memory buffers of full and sketched data samples, where the sketched data are leveraged to prevent catastrophic forgetting. The theoretical motivation for our use of sketching as a regularizer is presented via a simple Johnson-Lindenstrauss-informed result. While our methods may be of wider interest in the field of continual learning, we specifically target in situ neural compression using implicit neural representation-based hypernetworks. We evaluate our method on a variety of complex simulation data in two and three dimensions, over long time horizons, and across unstructured grids and non-Cartesian geometries. On these tasks, we show strong reconstruction performance at high compression rates. Most importantly, we demonstrate that sketching enables the presented in situ scheme to approximately match the performance of the equivalent offline method.
https://arxiv.org/abs/2511.02659
We propose MIRA, a new benchmark designed to evaluate models in scenarios where generating intermediate visual images is essential for successful reasoning. Unlike traditional CoT methods that rely solely on text, tasks in MIRA require models to generate and utilize intermediate images - such as sketches, structural diagrams, or path drawings - to guide their reasoning process. This setup closely mirrors how humans solve complex problems through "drawing to think". To solve this, MIRA focuses on tasks that are intrinsically challenging and involve complex structures, spatial relationships, or reasoning steps that are difficult to express through language alone. To ensure that our evaluation data is of high-quality, we include 546 multimodal problems, annotated with intermediate visual images and final answers. We also propose a unified evaluation protocol for MIRA that spans three levels of evaluation input: direct input with image and question only, text-only CoT input with image and thinking prompts, and Visual-CoT input with both annotated image clues and textual thinking prompts. To probe the upper bound of model capacity on our benchmark, we also report pass@k and majority voting accuracies under different k settings. Experimental results show that existing multimodal large language models, including strongest private models as well as strong open-weight models, perform poorly when relying solely on textual prompts. However, when intermediate visual cues are provided, model performance improves consistently, yielding an average relative gain of 33.7% across all models and tasks. We also probe the upper bound by expanding the search space and designing textual prompts aligned with Visual-CoT, but both yield only limited improvements compared to our Visual-CoT setting. These results underscore the critical role of imagined visual information in enabling successful reasoning on MIRA.
https://arxiv.org/abs/2511.02779
Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model's intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at this https URL.
https://arxiv.org/abs/2511.02778
The problem of zero-shot sketch-based image retrieval (ZS-SBIR) has achieved increasing attention due to its wide applications, e.g. e-commerce. Despite progress made in this field, previous works suffer from using imbalanced samples of modalities and inconsistent low-quality information during training, resulting in sub-optimal performance. Therefore, in this paper, we introduce an approach called Dynamic Multi-level Weighted Alignment Network for ZS-SBIR. It consists of three components: (i) a Uni-modal Feature Extraction Module that includes a CLIP text encoder and a ViT for extracting textual and visual tokens, (ii) a Cross-modal Multi-level Weighting Module that produces an alignment weight list by the local and global aggregation blocks to measure the aligning quality of sketch and image samples, (iii) a Weighted Quadruplet Loss Module aiming to improve the balance of domains in the triplet loss. Experiments on three benchmark datasets, i.e., Sketchy, TU-Berlin, and QuickDraw, show our method delivers superior performances over the state-of-the-art ZS-SBIR methods.
https://arxiv.org/abs/2511.00925
Large Reasoning Models (LRMs) demonstrate strong performance on complex reasoning tasks, yet they often suffer from overthinking, producing excessively long chain-of-thought (CoT) traces that increase inference cost and may degrade accuracy. Our analysis reveals a clear anti-correlation between reasoning length and accuracy, where across multiple stochastic decodes, the short reasoning paths consistently achieve the highest correctness, while longer ones accumulate errors and repetitions. These short optimal reasoning paths can be found ideally through full enumeration of the reasoning space. However, the tree-structured reasoning space grows exponentially with sequence length, rendering exhaustive exploration infeasible. To address this, we propose DTS, a model-agnostic decoding framework that sketches the reasoning space by selectively branching at high-entropy tokens and applies early stopping to select the shortest completed reasoning path. This approach approximates the optimal solution that enhances both efficiency and accuracy, without requiring additional training or supervision. Experiments on AIME2024 and AIME2025 datasets with DeepSeek-R1-Distill-Qwen-7B and 1.5B show that DTS improves accuracy by up to 8%, reduces average reasoning length by 23%, and decreases repetition frequency by 12%, demonstrating DTS's ability for scalable and efficient LRM reasoning.
https://arxiv.org/abs/2511.00640
Graphic layout generation is a growing research area focusing on generating aesthetically pleasing layouts ranging from poster designs to documents. While recent research has explored ways to incorporate user constraints to guide the layout generation, these constraints often require complex specifications which reduce usability. We introduce an innovative approach exploiting user-provided sketches as intuitive constraints and we demonstrate empirically the effectiveness of this new guidance method, establishing the sketch-to-layout problem as a promising research direction, which is currently under-explored. To tackle the sketch-to-layout problem, we propose a multimodal transformer-based solution using the sketch and the content assets as inputs to produce high quality layouts. Since collecting sketch training data from human annotators to train our model is very costly, we introduce a novel and efficient method to synthetically generate training sketches at scale. We train and evaluate our model on three publicly available datasets: PubLayNet, DocLayNet and SlidesVQA, demonstrating that it outperforms state-of-the-art constraint-based methods, while offering a more intuitive design experience. In order to facilitate future sketch-to-layout research, we release O(200k) synthetically-generated sketches for the public datasets above. The datasets are available at this https URL.
https://arxiv.org/abs/2510.27632
Karl Marx once wrote that ``the human essence is the ensemble of social relations'', suggesting that individuals are not isolated entities but are fundamentally shaped by their interactions with other entities, within which contexts play a constitutive and essential role. With the advent of computers and artificial intelligence, these contexts are no longer limited to purely human--human interactions: human--machine interactions are included as well. Then a central question emerges: How can machines better understand our situations and purposes? To address this challenge, researchers have recently introduced the concept of context engineering. Although it is often regarded as a recent innovation of the agent era, we argue that related practices can be traced back more than twenty years. Since the early 1990s, the field has evolved through distinct historical phases, each shaped by the intelligence level of machines: from early human--computer interaction frameworks built around primitive computers, to today's human--agent interaction paradigms driven by intelligent agents, and potentially to human--level or superhuman intelligence in the future. In this paper, we situate context engineering, provide a systematic definition, outline its historical and conceptual landscape, and examine key design considerations for practice. By addressing these questions, we aim to offer a conceptual foundation for context engineering and sketch its promising future. This paper is a stepping stone for a broader community effort toward systematic context engineering in AI systems.
https://arxiv.org/abs/2510.26493
3D human pose estimation from sketches has broad applications in computer animation and film production. Unlike traditional human pose estimation, this task presents unique challenges due to the abstract and disproportionate nature of sketches. Previous sketch-to-pose methods, constrained by the lack of large-scale sketch-3D pose annotations, primarily relied on optimization with heuristic rules-an approach that is both time-consuming and limited in generalizability. To address these challenges, we propose a novel approach leveraging a "learn from synthesis" strategy. First, a diffusion model is trained to synthesize sketch images from 2D poses projected from 3D human poses, mimicking disproportionate human structures in sketches. This process enables the creation of a synthetic dataset, SKEP-120K, consisting of 120k accurate sketch-3D pose annotation pairs across various sketch styles. Building on this synthetic dataset, we introduce an end-to-end data-driven framework for estimating human poses and shapes from diverse sketch styles. Our framework combines existing 2D pose detectors and generative diffusion priors for sketch feature extraction with a feed-forward neural network for efficient 2D pose estimation. Multiple heuristic loss functions are incorporated to guarantee geometric coherence between the derived 3D poses and the detected 2D poses while preserving accurate self-contacts. Qualitative, quantitative, and subjective evaluations collectively show that our model substantially surpasses previous ones in both estimation accuracy and speed for sketch-to-pose tasks.
https://arxiv.org/abs/2510.26196
We present a novel task: text-to-3D sketch animation, which aims to bring freeform sketches to life in dynamic 3D space. Unlike prior works focused on photorealistic content generation, we target sparse, stylized, and view-consistent 3D vector sketches, a lightweight and interpretable medium well-suited for visual communication and prototyping. However, this task is very challenging: (i) no paired dataset exists for text and 3D (or 4D) sketches; (ii) sketches require structural abstraction that is difficult to model with conventional 3D representations like NeRFs or point clouds; and (iii) animating such sketches demands temporal coherence and multi-view consistency, which current pipelines do not address. Therefore, we propose 4-Doodle, the first training-free framework for generating dynamic 3D sketches from text. It leverages pretrained image and video diffusion models through a dual-space distillation scheme: one space captures multi-view-consistent geometry using differentiable Bézier curves, while the other encodes motion dynamics via temporally-aware priors. Unlike prior work (e.g., DreamFusion), which optimizes from a single view per step, our multi-view optimization ensures structural alignment and avoids view ambiguity, critical for sparse sketches. Furthermore, we introduce a structure-aware motion module that separates shape-preserving trajectories from deformation-aware changes, enabling expressive motion such as flipping, rotation, and articulated movement. Extensive experiments show that our method produces temporally realistic and structurally stable 3D sketch animations, outperforming existing baselines in both fidelity and controllability. We hope this work serves as a step toward more intuitive and accessible 4D content creation.
https://arxiv.org/abs/2510.25319
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: this https URL.
https://arxiv.org/abs/2510.24514
Reasoning methods such as chain-of-thought prompting and self-consistency have shown immense potential to improve the accuracy of large language models across various reasoning tasks. However such methods involve generation of lengthy reasoning chains, which substantially increases token consumption, computational cost, and latency. To address this inefficiency, we propose ProofSketch, a verification-guided reasoning framework that integrates symbolic closure computation, lexicographic verification and adaptive sketch generation. Our experiments show that ProofSketch consistently reduces token usage while improving accuracy, demonstrating that this approach offers a promising path for efficient and trustworthy reasoning.
https://arxiv.org/abs/2510.24811