Paper Reading AI Learner

Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction

2021-11-10 20:56:29
Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, Mark Coates

Abstract

Presently with technology node scaling, an accurate prediction model at early design stages can significantly reduce the design cycle. Especially during logic synthesis, predicting cell congestion due to improper logic combination can reduce the burden of subsequent physical implementations. There have been attempts using Graph Neural Network (GNN) techniques to tackle congestion prediction during the logic synthesis stage. However, they require informative cell features to achieve reasonable performance since the core idea of GNNs is built on the message passing framework, which would be impractical at the early logic synthesis stage. To address this limitation, we propose a framework that can directly learn embeddings for the given netlist to enhance the quality of our node features. Popular random-walk based embedding methods such as Node2vec, LINE, and DeepWalk suffer from the issue of cross-graph alignment and poor generalization to unseen netlist graphs, yielding inferior performance and costing significant runtime. In our framework, we introduce a superior alternative to obtain node embeddings that can generalize across netlist graphs using matrix factorization methods. We propose an efficient mini-batch training method at the sub-graph level that can guarantee parallel training and satisfy the memory restriction for large-scale netlists. We present results utilizing open-source EDA tools such as DREAMPLACE and OPENROAD frameworks on a variety of openly available circuits. By combining the learned embedding on top of the netlist with the GNNs, our method improves prediction performance, generalizes to new circuit lines, and is efficient in training, potentially saving over $90 \%$ of runtime.

Abstract (translated)

URL

https://arxiv.org/abs/2111.05941

PDF

https://arxiv.org/pdf/2111.05941.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot