Paper Reading AI Learner

Semantic-aware Representation Learning Via Probability Contrastive Loss

2021-11-11 02:08:07
Junjie Li, Yixin Zhang, Zilei Wang, Keyu Tu

Abstract

Recent feature contrastive learning (FCL) has shown promising performance in unsupervised representation learning. For the close-set representation learning where labeled data and unlabeled data belong to the same semantic space, however, FCL cannot show overwhelming gains due to not involving the class semantics during optimization. Consequently, the produced features do not guarantee to be easily classified by the class weights learned from labeled data although they are information-rich. To tackle this issue, we propose a novel probability contrastive learning (PCL) in this paper, which not only produces rich features but also enforces them to be distributed around the class prototypes. Specifically, we propose to use the output probabilities after softmax to perform contrastive learning instead of the extracted features in FCL. Evidently, such a way can exploit the class semantics during optimization. Moreover, we propose to remove the $\ell_{2}$ normalization in the traditional FCL and directly use the $\ell_{1}$-normalized probability for contrastive learning. Our proposed PCL is simple and effective. We conduct extensive experiments on three close-set image classification tasks, i.e., unsupervised domain adaptation, semi-supervised learning, and semi-supervised domain adaptation. The results on multiple datasets demonstrate that our PCL can consistently get considerable gains and achieves the state-of-the-art performance for all three tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2111.06021

PDF

https://arxiv.org/pdf/2111.06021.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot