Paper Reading AI Learner

Fingerprint Presentation Attack Detection by Channel-wise Feature Denoising

2021-11-15 09:13:21
Feng Liu, Zhe Kong, Haozhe Liu, Wentian Zhang, Linlin Shen

Abstract

Due to the diversity of attack materials, fingerprint recognition systems (AFRSs) are vulnerable to malicious attacks. It is of great importance to propose effective Fingerprint Presentation Attack Detection (PAD) methods for the safety and reliability of AFRSs. However, current PAD methods often have poor robustness under new attack materials or sensor settings. This paper thus proposes a novel Channel-wise Feature Denoising fingerprint PAD (CFD-PAD) method by considering handling the redundant "noise" information which ignored in previous works. The proposed method learned important features of fingerprint images by weighting the importance of each channel and finding those discriminative channels and "noise" channels. Then, the propagation of "noise" channels is suppressed in the feature map to reduce interference. Specifically, a PA-Adaption loss is designed to constrain the feature distribution so as to make the feature distribution of live fingerprints more aggregate and spoof fingerprints more disperse. Our experimental results evaluated on LivDet 2017 showed that our proposed CFD-PAD can achieve 2.53% ACE and 93.83% True Detection Rate when the False Detection Rate equals to 1.0% (TDR@FDR=1%) and it outperforms the best single model based methods in terms of ACE (2.53% vs. 4.56%) and TDR@FDR=1%(93.83% vs. 73.32\%) significantly, which proves the effectiveness of the proposed method. Although we have achieved a comparable result compared with the state-of-the-art multiple model based method, there still achieves an increase of TDR@FDR=1% from 91.19% to 93.83% by our method. Besides, our model is simpler, lighter and, more efficient and has achieved a 74.76% reduction in time-consuming compared with the state-of-the-art multiple model based method. Code will be publicly available.

Abstract (translated)

URL

https://arxiv.org/abs/2111.07620

PDF

https://arxiv.org/pdf/2111.07620.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot