Paper Reading AI Learner

Speech Emotion Recognition Using Deep Sparse Auto-Encoder Extreme Learning Machine with a New Weighting Scheme and Spectro-Temporal Features Along with Classical Feature Selection and A New Quantum-Inspired Dimension Reduction Method

2021-11-13 11:09:38
Fatemeh Daneshfar, Seyed Jahanshah Kabudian

Abstract

Affective computing is very important in the relationship between man and machine. In this paper, a system for speech emotion recognition (SER) based on speech signal is proposed, which uses new techniques in different stages of processing. The system consists of three stages: feature extraction, feature selection, and finally feature classification. In the first stage, a complex set of long-term statistics features is extracted from both the speech signal and the glottal-waveform signal using a combination of new and diverse features such as prosodic, spectral, and spectro-temporal features. One of the challenges of the SER systems is to distinguish correlated emotions. These features are good discriminators for speech emotions and increase the SER's ability to recognize similar and different emotions. This feature vector with a large number of dimensions naturally has redundancy. In the second stage, using classical feature selection techniques as well as a new quantum-inspired technique to reduce the feature vector dimensionality, the number of feature vector dimensions is reduced. In the third stage, the optimized feature vector is classified by a weighted deep sparse extreme learning machine (ELM) classifier. The classifier performs classification in three steps: sparse random feature learning, orthogonal random projection using the singular value decomposition (SVD) technique, and discriminative classification in the last step using the generalized Tikhonov regularization technique. Also, many existing emotional datasets suffer from the problem of data imbalanced distribution, which in turn increases the classification error and decreases system performance. In this paper, a new weighting method has also been proposed to deal with class imbalance, which is more efficient than existing weighting methods. The proposed method is evaluated on three standard emotional databases.

Abstract (translated)

URL

https://arxiv.org/abs/2111.07094

PDF

https://arxiv.org/pdf/2111.07094.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot