Paper Reading AI Learner

Pose Recognition in the Wild: Animal pose estimation using Agglomerative Clustering and Contrastive Learning


Abstract

Animal pose estimation has recently come into the limelight due to its application in biology, zoology, and aquaculture. Deep learning methods have effectively been applied to human pose estimation. However, the major bottleneck to the application of these methods to animal pose estimation is the unavailability of sufficient quantities of labeled data. Though there are ample quantities of unlabelled data publicly available, it is economically impractical to label large quantities of data for each animal. In addition, due to the wide variety of body shapes in the animal kingdom, the transfer of knowledge across domains is ineffective. Given the fact that the human brain is able to recognize animal pose without requiring large amounts of labeled data, it is only reasonable that we exploit unsupervised learning to tackle the problem of animal pose recognition from the available, unlabelled data. In this paper, we introduce a novel architecture that is able to recognize the pose of multiple animals fromunlabelled data. We do this by (1) removing background information from each image and employing an edge detection algorithm on the body of the animal, (2) Tracking motion of the edge pixels and performing agglomerative clustering to segment body parts, (3) employing contrastive learning to discourage grouping of distant body parts together. Hence we are able to distinguish between body parts of the animal, based on their visual behavior, instead of the underlying anatomy. Thus, we are able to achieve a more effective classification of the data than their human-labeled counterparts. We test our model on the TigDog and WLD (WildLife Documentary) datasets, where we outperform state-of-the-art approaches by a significant margin. We also study the performance of our model on other public data to demonstrate the generalization ability of our model.

Abstract (translated)

URL

https://arxiv.org/abs/2111.08259

PDF

https://arxiv.org/pdf/2111.08259.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot